
Chapter 3

Theory of Extracellular Electrical
Stimulation

In Chapter 2, a functional description of the retinal implant was given. Central to the
implant’s function is the task of creating action potentials in ganglion cell bodies where the
retinal circuitry has failed to do so. The purpose of this chapter is to investigate a general
theory of how such a task is accomplished.

Definition of terms

When an action potential is created in a nerve cell, the cell is said to be stimulated. Nerve
cells in living organisms may be stimulated by electrical, mechanical, or chemical means,
depending on the particular cell type. Electrical stimulation of many types of cells may be
performed by applying an electrical current inside or near the cells. If current is applied
directly to the inside of a cell and an action potential is generated as a result, the cell is
stimulated intracellularly (see Figure 3-1a). If the stimulating current is applied outside of
a cell, as in Figure 3-1b, the cell is stimulated extracellularly.
The retinal implant will use electrical current to stimulate ganglion cells in the retina.

For a variety of reasons, the implant electrodes will not penetrate the retinal cells. Therefore,
the retinal implant’s mode of operation is extracellular electrical stimulation.

Previous work

A number of papers have been written on extracellular electrical stimulation. Broadly
speaking, research in the field has been either experimentally or analytically motivated.
Research of the first type has generally involved experiments performed on real nerve cells
to test or formulate qualitative theories which describe how the cells were stimulated. A use-
ful summary of the data and theories emanating from such research is given by Ranck[46].
Research of the second type is more mathematical and abstract. Models of nerve cells
have been constructed based on some particular set of assumptions about cell shape, mem-
brane structure, and environment. Due to the many assumptions that must be made to
simplify analysis, few attempts have been made at finding quantitative correspondences
between theory and experiment[48, 51, 53]. For the most part, analyses have been matched
qualitatively to familiar trends in extracellular electrical stimulation experiments, or have
predicted phenomena which remain untested[8, 33, 41, 52, 47, 61].
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(a) (b)

Figure 3-1: (a) Schematic of intracellular stimulation of a cell; (b) Schematic of extracellular
stimulation of a cell.

The work of the analytical literature is divided into two parts based on morphological
considerations. While the typically bulbous cell body of a nerve cell has been modeled
as a perfect sphere, the shaft-like axon has been modeled as a right circular cylinder. To
my knowledge, dendrites have not been modeled for extracellular electrical stimulation
problems. Spherical cell body models and cylindrical axon models have been analyzed in
isolation in order to simplify the math. That is, axon models have been analyzed in the
absence of a cell body, and cell body models have been analyzed in the absence of an
axon. For reasons that will become clear later in the chapter, analyses of axon models have
concentrated on the effects of longitudinal variations in electric potential and largely ignored
transverse effects. The analytical methods which have been used to study longitudinal
effects in axons and to study cell bodies are now briefly considered.
A general method for analyzing the effects of variations in electric potential along an

axon’s length is the procedure used by McNeal[33]. The first step of McNeal’s method is
to calculate the potentials created in the extracellular space by a specified electrode con-
figuration. A familiar configuration is the monopolar spherical geometry. The extracellular
medium is commonly assumed to be a uniform, linear, and isotropic conductor of infinite
extent. Due to its relatively small size, the axon model is assumed to have negligible effect
on the electrode-induced potentials, and is usually ignored during this step. For relatively
simple models based on the assumptions described above, closed-form solutions for the ex-
tracellular potentials have been found. For more complex models, numerical simulations
could be employed to find the extracellular potentials.
Once the electrode-induced potentials are known, an axon model must be chosen. All

such models rely on the basic set of assumptions listed in Table 3.1. Implicit in assumptions
2 and 5 is the notion that the electric field creates a radially symmetric equipotential
region outside of the axon model at a given position along its length. For most electrode
configurations, this will not be strictly true. However, it has been demonstrated by McNeal
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1. The cell membrane is a cylindrical boundary that surrounds a conduc-
tor of electrical current, the intracellular solution, which is assumed to be
homogeneous, isotropic, and obey Ohm’s law.

2. All the electric variables have cylindrical symmetry.

3. A circuit theory description of currents and voltages is adequate. That
is, the quasi-static terms of Maxwell’s equations are sufficient, and electro-
magnetic radiation effects are negligible.

4. Current flows through the inner conductor in the longitudinal direction
only. Current flows through the membrane in the radial direction only.

5. At a given longitudinal position along the axon, the inner conductor and
external surface of the axonal membrane are equipotentials, so that the only
variation in potential occurs in the radial direction, across the membrane.

Table 3.1: Basic assumptions for analyzing longitudinal effects in axons; adapted from [63].
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that the effects of transverse variations in extracellular potential were vastly smaller to those
of variations in potential along the axon’s length[33]. This fact will also be demonstrated
later in the chapter.
In addition to the general assumptions listed in Table 3.1, several specific attributes

must be added to the axon model before the second step of McNeal’s method can be
carried out. For instance, one must decide if the model is to represent a myelinated or an
unmyelinated axon. In addition, an axonal length - be it finite or infinite - must be specified.
Furthermore, membrane properties such linearity and passivity, as exhibited by the cable
model, or nonlinearity, as seen in the Hodgkin/Huxley model of the squid axon[21] must
be decided. Finally, the time-dependent behavior of the model must be considered. Will
we analyze a steady-state response of a model, a transient effect, or a frequency response?
McNeal studied the transient response of two different models of finite-length, myelinated
axons to a step of extrinsic current; one model was passive and linear, and the other was
the nonlinear Frankenhauser-Huxley model of frog nerve[33].
The second step of McNeal’s method is to calculate the transmembrane potentials in-

duced in the axon model by the extracellular potentials determined in the first step. Note
from assumption 3 of Table 3.1 that the model generated by each choice of axon model
properties will have a circuit theory representation. Once the details of the axon model
have been decided, the corresponding circuit is “placed” somewhere in the extracellular
medium. The axon model circuit is then solved (either analytically or numerically, depend-
ing on the complexity of the circuit) for the case where it is driven by a series of voltage
sources connected to the nodes representing the extracellular space along the axon model’s
length. The voltages at these extracellular nodes are assigned so as to match the voltage
profile seen by the axon when placed in the chosen position and orientation relative to the
stimulating electrode. The transmembrane potentials can then be easily deduced from the
circuit solution.
I have only seen two papers which present models of the cell body for extracellular

electrical stimulation problems. In both papers, the cell body is modeled as a perfect
sphere with a membrane of zero thickness. Plonsey and Altman attribute a distributed
specific resistance (SI units are ohm·m2) to the membrane and use their model to analyze
the effects of steady-state electric fields[41], while Cartee and Plonsey attribute both a
specific resistance and a capacitance per unit area to the membrane in order to analyze
the transient effects of a step in applied electric field[8]. The analyses in the two papers
are similar in most other respects. The intracellular and extracellular fluids are modeled as
linear, isotropic, and homogeneous conductors. The applied electric field is uniform far away
from the cell body model, corresponding to the parallel plate electrode configuration. The
electric potential inside of and outside of the cell body model are found by solving Laplace’s
equation using standard techniques. The uniformity of the field far from the cell body
model and the electrical characteristics of the membrane provide the necessary boundary
conditions. The transmembrane potential can be calculated from the resulting solution in a
straightforward manner. As in the case of the simpler axon models discussed above, useful
analytical results can be found in closed form. Unlike the axon models for longitudinal
effects, the cell body model plays a role in determining the extracellular potentials created
by the extracellular electrode near the cell.
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Chapter overview

The simplest of the models described above, incorporating idealized electric fields and cell
shapes, uniformly linear membranes, and steady-state conditions will be analyzed in this
chapter. Three representative scenarios, illustrated schematically in Figure 3-2, will be
examined. In all cases, two large, perfectly conducting parallel plates are connected to a
current source which has been on for a long time relative to any time constants of inter-
est. Neglecting fringing, the electric field in the absence of the cell models will be uniform
and horizontally directed between the plates, and zero everywhere else. In section 3.2, the
transmembrane potentials induced in the spherical cell body model (Figure 3-2a) will be
found from Laplacian solutions for the electric potential. In section 3.3, the transmembrane
potentials induced in the infinitely long axon by a longitudinal field (Figure 3-2b) will be
calculated using McNeal’s method in conjunction with the cable model for unmyelinated ax-
ons. The mathematical formula for the transmembrane potentials induced in the cell body
model will be related to the general principles described by Ranck[46]. Results from the
longitudinal axon model will be related to theoretical work presented by various authors.
The analyses of these first two stimulus paradigms will be our our primary means of un-
derstanding how nerve cells are stimulated extracellularly. The transmembrane potentials
induced in the infinitely long axon by a transverse electric field (Figure 3-2c) can be found
from Laplacian solutions for the electric potential, as in the case of the spherical cell body
model. While this formulation has not yet been seen in the literature, the derivations bear
a strong resemblance to those for the spherical cell (see appendix A.2), and consequently
yield little additional insight. The solution for this model is given in section 3.4, where an-
alytical results are used to predict how the minimum-amplitude or threshold fields required
to generate action potentials using the three stimulus paradigms compare with one another.
The goal of the analyses that follow is to predict as many general phenomena of extra-

cellular electrical stimulation of nerve cells as possible with relatively simple models. This,
of course, involves tradeoffs. Due to the large number of assumptions that will be made
in modeling cell bodies and axons, the analyses that follow will fail to predict significant
aspects of nerve cell behavior. Section 3.1 provides a formal statement of the assumptions
made in this chapter. A discussion of the more dramatic consequences of certain assump-
tions is included in that section. The topic is then reconsidered more thoroughly at the end
of the chapter, in section 3.5.
It should also be noted that the models we are proposing may apply to more general

situations than those that will be analyzed in this thesis. For example, induced trans-
membrane potentials in all models may be found for arbitrary electrode configurations if
numerical simulations are employed. Furthermore, all models take the cell membrane ca-
pacitance into account, so that equations derived from the models can be used to evaluate
the effects of low frequency time varying fields1.

3.1 Statement of Assumptions

In addition to the assumptions listed in Table 3.1 for modeling longitudinal effects in axons,
the following will be assumed:

1Of course, if the time variation of the electric field is rapid enough to produce electromagnetic radiation
effects, the models presented in this chapter will be inadequate.
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(a) (b)

(c)

Figure 3-2: Stimulus paradigms. (a) Cell body in a uniform field; (b) Axon in a longitudinal
field; (c) Axon in a uniform, transverse field.
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1. Extracellular electric fields near a cell body are not affected by the cell’s axon, by the
cell’s dendrites, or by other cells in the vicinity; extracellular fields near an axon are
not affected by the cell body, by the cell’s dendrites, or by other cells. In other words,
cell body and axon models will be analyzed in isolation.

2. Cell bodies are perfect spheres. Axons are right circular cylinders of (doubly) infinite
length.

3. Intracellular and extracellular fluids have linear, isotropic, and homogeneous electrical
properties.

4. Below a fixed threshold depolarization, cell membranes have passive, linear, and time-
invariant electrical properties which are uniform over their entire surface area.

5. There are no fixed charges in the material, so that the electric potential has Laplacian
solutions.

6. When electroquasistatic models are used, the applied electric field is uniform far from
the cell body and axon models.

7. When circuit models are used, extracellular electrodes are represented with perfect
voltage sources whose values are determined by the potentials induced by the electrode
in a homogeneous extracellular medium.

Some of the assumptions are stronger than others, and all will have an effect on the
validity of the derived results. Probably the strongest of the assumptions is that cell mem-
branes are passive and linear. This assumption has two important consequences. First,
nerve cell membranes have active components such as the sodium-potassium pump, which
helps maintain a rest potential across the membrane. The inside of a resting cell is generally
at a lower potential than the outside of the cell, and the membrane is said to be polarized.
Since the models which will be used here have no active components, they will not predict
this polarization. Second, nerve cells can produce highly nonlinear action potentials. Since
the models which used here are linear, they will not reproduce action potentials or any
other properties of excitation.
All is not lost, however. For small enough perturbations of transmembrane potential

about its rest value, cell membranes are incrementally linear [63]. Through their extensive
theoretical and experimental work on crustacean axons, for example, Hodgkin and Rushton
demonstrated that the cell membrane will behave linearly for stimulating currents up to
half of the threshold for excitation[22]. On the other hand, McNeal’s numerical simulations
of the Frankenhauser-Huxley equations for myelinated frog nerve show that linear behavior
persists up to 80% of the excitation threshold[33].
Our models represent a linearization of the membrane’s nonlinear electrical properties

about the rest potential. Presumably, the linear approximation will be a very good one
well below the excitation threshold, and will become progressively worse as the threshold
is approached.
The rest potential itself is not accounted for in our models. Derived transmembrane

potentials therefore represent incremental deviations about this value. We will speak of
induced transmembrane potentials when discussing the incremental effect of the applied
field. The sign of the induced transmembrane potential will reveal the effective electrophys-
iological state of the cell model’s membrane. In areas where the induced transmembrane
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Figure 3-3: Cell body model.

potential is positive, the inside of the cell model is incrementally positive with respect to the
outside. Such areas are said to be depolarized. In areas where the induced transmembrane
potential is negative, the inside of the cell model is incrementally negative with respect to
the outside. These areas are said to be hyperpolarized.
Excitable cells will produce action potentials if their membranes are sufficiently depo-

larized. Under assumption 4, linear models may be used to predict excitation thresholds
explicitly. It is sufficient to calculate the electric field strength required to induce the
threshold depolarization in the models. When the threshold is reached, action potentials
are produced and the linear models are no longer valid. For the purposes of this thesis, we
are not interested in the properties of the action potentials themselves. Therefore, nonlinear
models will not be examined. Furthermore, we are less interested in the exact values of the
thresholds for the three stimulus paradigms than in how these thresholds compare with one
another. Such relationships will be explored in section 3.4.

3.2 Cell Body in a Uniform Electric Field

A model for the cell body is illustrated in Figure 3-3. The model is a perfect sphere of
radius R centered on a coordinate axis with the Cartesian coordinates x, y and z and the
spherical coordinates r and θ drawn in for reference. The intracellular and extracellular
fluids have uniform permittivity εf . The intracellular fluid has uniform conductivity σi,
and the extracellular fluid has uniform conductivity σe. The cell membrane is modeled
as a linear, isotropic, and homogeneous spherical shell of thickness ∆, permittivity εm,
and conductivity σm. The model is similar to that analyzed by Cartee and Plonsey[8],
but differs in two respects. First, the membrane thickness ∆ is assumed to be zero in
their model. In the place of permittivity and conductivity, the zero thickness membrane is
described by two distributed circuit parameters, a specific resistance and a capacitance per
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unit area. Second, the fluid permittivity εf is neglected in their model. Laplacian solutions
for potentials in and around the model used by Cartee and Plonsey may be found fairly
easily using a hybridization of circuit theory and classical electric field theory laws. While
requiring slightly more algebra, the model of Figure 3-3 entails fewer assumptions about
cell structure and provides a consistent electric field theory representation of the cell body.

3.2.1 Solution form and boundary conditions

The solution for the electric potential is of the form

Φ =




a(t)r cos θ for r < R,

b(t)r cos θ + c(t)
r2 cos θ for R < r < R+∆,

−Eo(t)r cos θ +
d(t)
r2 cos θ for r > R+∆.

(3.1)

Before we determine the boundary conditions that apply to this solution, a few comments
are in order. First, notice that for large r, the potential is approximately −Eo(t)r cos θ
or simply −Eo(t)z. This agrees with the previously established condition that the electric
field is uniform and horizontally directed far from the cell body model. Second, note that
there is no φ-variation in the potential. This is due to the uniformity of the applied field
and spherical symmetry of the cell body model. More importantly, it points to the relative
simplicity of solution (3.1), which for other applied fields and cell body geometries would
likely involve a modal expansion in spherical harmonics. Now we will establish the boundary
conditions which apply to the solution given above.
The functions a(t), b(t), c(t) and d(t) can be related to one another and to the surface

charge densities on the membrane:solution boundaries using three continuity conditions.
The conditions follow from, respectively, Faraday’s Law, Gauss’ Law, and charge conserva-
tion:

n× (Ea −Eb) = 0,
n · (Da −Db) = σsu,

n · (Ja
u − Jb

u) = − ·
σsu .

In above equations, E is the electric field, D is the electric flux density, Ju is the unpaired
current density, σsu represents surface charge density, and

·
σsu is the time derivative of

σsu. The vector n is the unit normal to the boundary. The superscripts a and b indicate
position with reference to the boundary at which the continuity condition is applied, as
shown in Figure 3-4. The cell membrane, intracellular fluid, and extracellular fluid are
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all assumed to be linear, isotropic, and homogeneous materials. Thus, the constitutive laws
for unpaired current density and displacement flux density may be used on the latter two
continuity conditions, yielding

n · (εaEa − εbEb) = σsu,

n · (σaEa − σbEb) = − ·
σsu .

Since the cell body is a perfect sphere centered on the origin, the normal vector to the
membrane is n = ı̂r. Using this fact and the definition of potential,

E = −∇Φ, (3.2)

the continuity conditions take the following form:

∂Φa

∂θ
=

∂Φb

∂θ
,

−εa
∂Φa

∂r
+ εb

∂Φb

∂r
= σsu,

−σa
∂Φa

∂r
+ σb

∂Φb

∂r
= − ·

σsu .

Application of the continuity conditions at r = R and r = R + ∆ yield the following
equations.

bR+
c

R2
= aR, (3.3)

−Eo(t)(R +∆) +
d

(R +∆)2
= b(R +∆) +

c

(R+∆)2
, (3.4)

−εm

(
b− 2c

R3

)
cos θ + εfa cos θ = σi

su, (3.5)

−εf

[
−Eo(t)− 2d

(R+∆)3

]
cos θ + εm

[
b− 2c
(R+∆)3

]
cos θ = σe

su, (3.6)

−σm

(
b− 2c

R3

)
cos θ + σia cos θ = − ·

σ
i

su, (3.7)

−σe

[
−Eo(t)− 2d

(R +∆)3

]
cos θ + σm

[
b− 2c
(R+∆)3

]
cos θ = − ·

σ
e

su . (3.8)

In the above equations, a = a(t), b = b(t), c = c(t), d = d(t), and σi
su and σe

su

are the surface charge densities on the intracellular and extracellular membrane:solution
boundaries, respectively. These equations completely describe a linear time-invariant system
in six variables (a, b, c, d, σi

su, and σe
su) which may be solved completely for a given Eo(t).

3.2.2 Time-independent solution

If the applied field is held constant at Eo, and the system described above is in steady
state, the time derivatives in equations (3.7) and (3.8) will be zero. In such a case, equa-
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tions (3.3),(3.4), (3.7), and (3.8) can be solved for a, b, c, and d.
From equations (3.3) and (3.4), it can be shown that

b = a− (R+∆)3

(R +∆)3 −R3

[
a− d

(R+∆)3
+ Eo

]
, (3.9)

c =
R3(R+∆)3

(R+∆)3 −R3

[
a− d

(R+∆)3
+ Eo

]
. (3.10)

Substituting into equations (3.7) and (3.8), noting that the time derivatives are zero, and
collecting terms yields

a

[
σi+σm

2(R+∆)3+R3

(R+∆)3−R3

]
+ d

(R+∆)3

[
−σm

3(R+∆)3

(R+∆)3−R3

]
=Eo

[
−σm

3(R+∆)3

(R+∆)3−R3

]
,

a

[
−σm

3R3

(R+∆)3−R3

]
+ d

(R+∆)3

[
2σe+σm

(R+∆)3+2R3

(R+∆)3−R3

]
=Eo

[
−σe+σm

(R+∆)3+2R3

(R+∆)3−R3

]
.

Several of the expressions in the two preceding equations can be written in terms of the
membrane conductance per unit area,

Gm = σm/∆, (3.11)

by noting that
σm

(R+∆)3 −R3
=

Gm

3R2 + 3R∆+∆2
.

After making this substitution, we have

a

[
σi+Gm

2(R+∆)3+R3

3R2+3R∆+∆2

]
+ d

(R+∆)3

[
−Gm

3(R+∆)3

3R2+3R∆+∆2

]
=Eo

[
−Gm

3(R+∆)3

3R2+3R∆+∆2

]
,

a

[
−Gm

3R3

3R2+3R∆+∆2

]
+ d

(R+∆)3

[
2σe+Gm

(R+∆)3+2R3

3R2+3R∆+∆2

]
=Eo

[
−σe+Gm

(R+∆)3+2R3

3R2+3R∆+∆2

]
.

The equations we have derived thus far can now be greatly simplified by recognizing that
membrane thickness ∆ is much less than the cell body radius R. Specifically, cell membranes
are known to be on the order of 75Å thick[63], whereas the radii of ganglion cell bodies2

in rabbit retina3 have been measured at roughly 10µm[1, 26]. Thus the cell body radius is
over a factor of 1000 greater than cell membrane thickness. Based on this comparison, we
make the approximation R+∆ ≈ R to obtain

a(σi +GmR) + d

(
−Gm

R2

)
= Eo(−GmR),

a(−GmR) + d

(
2σe

R3
+

Gm

R2

)
= Eo(−σe +GmR).

2Of course, retinal ganglion cell bodies are not perfect spheres. Therefore, to speak of cell body “radius”
is somewhat misleading. The numbers used here are calculated from measurements of cell body area when
viewed under a light microscope, and are used only to demonstrate that cell body size is generally much
larger than cell membrane thickness.

3 At the time this chapter was written, rabbits were the primary animal used for experimental research
in the retinal implant group.
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Now we can solve for a and d fairly easily, and we find that

a = − 3σeGmR

σiGmR+ 2σeGmR+ 2σiσe
Eo, (3.12)

d =
σiGmR4 − σeGmR4 − σiσeR

3

σiGmR+ 2σeGmR+ 2σiσe
Eo. (3.13)

Equations (3.1), (3.12) and (3.13) provide a complete solution for the electric potential
inside and outside of the cell body model. To determine the potential inside of the cell
membrane, it would be necessary to find b and c. This could be done by substituting the
solutions for a and d back into equations (3.9) and (3.10). However, the potential inside
of the membrane is not of critical importance to this analysis, so we will neglect b and c
altogether.

3.2.3 Interpretation of the time-independent solution

For purposes of nerve cell stimulation, the critical effect of an applied field is that it changes
the electric potential difference between the inside and the outside of the cell. This effect
will be called the induced transmembrane potential, and will be defined by

Vm = Φ|r=R −Φ|r=R+∆. (3.14)

The potential Φ at a point in space is determined by equations (3.1), (3.12), and (3.13).
The particular value Vm takes on depends on where along the cell membrane it is calculated.
Due to the symmetry of the cell body model, this position may be described by the angle θ
only (see Figure 3-3). As discussed in section 3.1, positive values of Vm will indicate areas of
cell membrane which are depolarized, and negative values of Vm will indicate hyperpolarized
areas.
Applying the definition of transmembrane potential given by equation (3.14) to the

solution found in section 3.2.2 gives

Vm =
3σiσeR

σiGmR+ 2σeGmR+ 2σiσe
Eo cos θ. (3.15)

This solution agrees with the results of Cartee and Plonsey, who derived the step-response
of Vm for a spherical cell body in a uniform field using a similar model[8].

Features of the induced transmembrane potential

While based on highly simplified models, the induced transmembrane potential given by
equation (3.15) predicts many of the phenomena described by Ranck for extracellular electri-
cal stimulation of real nerve cells[46]. Mathematical features of the induced transmembrane
potential are listed below and accompanied by the related phenomenon reported by Ranck.

• Vm ∝ cos θ
Regions at the right side of the cell (θ is near zero) are depolarized whereas regions
at the left side of the cell (θ is near π) are hyperpolarized. Since the applied electric
field points from the left to right, hyperpolarized regions occur where the extracellu-
lar potential is relatively high and depolarized regions occur where the extracellular
potential is relatively low.
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Gm = 0.001 S/cm2

σi = 0.005 S/cm
σe = 0.02 S/cm

Table 3.2: Electrical parameters for a typical cell. From [8].

• Vm ∝ R for sufficiently low GmR

Small cells will suffer smaller induced transmembrane potentials than large cells in
the same applied electric field. GmR will be “sufficiently low” if it is much less than
σi and σe. Using a radius of R = 10µm and the electrical parameters of a typical
cell[8] listed in Table 3.2, we see that GmR = 1× 10−6 S/cm. This is at least a factor
of 1000 smaller than σi or σe.

• Vm ↓ 0 as Gm ↑ ∞
The induced transmembrane potential is greatest for a perfectly insulating (Gm = 0)
membrane, and decreases as the membrane conductance increases.

• Vm ∝ Eo

Larger applied electric fields induce larger transmembrane potential changes. The
electric field is defined as the gradient of the electric potential. Therefore, the steeper
the extracellular voltage gradient, the greater the induced transmembrane potential.

Potential averaging property

Using the parameters in Table 3.2, a radius of R = 10µm and an applied electric field Eo = 1
V/cm, the plot of Figure 3-5 was produced to illustrate how transmembrane potentials are
induced in the cell body model. Potentials in the intracellular and extracellular space are
plotted along the z-axis as defined in Figure 3-3. Outside of the cell, |z| > R, the potential
profiles are approximately straight lines of negative slope, corresponding to the constant
electric field that would be established in the absence of the cell body model. Inside the cell,
|z| < R, the potential is constant and has assumed the average value of the potentials in the
neighboring extracellular space. The discontinuities in potential across the dotted lines in
Figure 3-5 represent induced transmembrane potentials. At z = −R the interior of the cell
model is at a lower potential than the exterior, representing a membrane hyperpolarization.
At z = R, the interior of the cell model is at a higher potential than the exterior, representing
a membrane depolarization.
The potential averaging that takes place inside the cell has a simple circuit theory

analogy. A one-dimensional circuit model of the cell body is illustrated in Figure 3-6.
Circuit nodes are labeled with circled integers for reference. Rl and Rr represent lumped
cell membrane resistances of the left and right halves of the cell body. Voltage drops
across these membrane resistances are analogous to induced transmembrane potentials. Ri

represents the intracellular resistance. Note that the membrane capacitance has been left
out of this model. In steady-state, the capacitances connected in parallel with resistors will
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Figure 3-5: Extracellular and intracellular voltages along the z-axis. Dotted lines indicate
boundary between the inside and the outside of the cell body model, i.e. the cell membrane.

resemble open circuits, and will therefore not affect the final distribution of voltages in the
circuit.
The sources vl and vr represent extracellularly applied voltages on the left and right

sides of the cell body, respectively. Strictly speaking, extracellular electrodes such as those
depicted in Figure 3-2a will not behave like perfect voltage sources in the immediate vicinity
of a cell, since the cell will play a role in determining the extracellular potentials nearby.
To see this relation, recall that the coefficient d in equation (3.1) for the electric potential
outside of the cell is shown in equation (3.13) to depend on the cell radiusR, the intracellular
conductivity σi, the extracellular conductivity σe, and the membrane conductance per unit
area Gm. Assuming the extracellular voltages are known, however, perfect sources may
be substituted at the appropriate nodes of the circuit to model the effect of extracellular
electrodes.
The intracellular voltages at nodes ©2 and ©3 may be found by solving the circuit

equations. These voltages are given by

v2 = vr +
Ri +Rr

Rl +Ri +Rr
(vl − vr),

v3 = vr +
Rr

Rl +Ri +Rr
(vl − vr).

If the intracellular resistance is small and the membrane resistances are equal,

v2 ≈ v3 ≈ vr + vl

2
.

Thus, the potentials at the intracellular nodes ©2 and ©3 are the average value of the
potentials at the extracellular nodes ©1 and ©4 .
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Figure 3-6: One-dimensional circuit model of spherical cell in steady-state.

The induced transmembrane potentials for the circuit model demonstrate the same
properties described above for the spherical cell body model. Define

vml = v2 − vl =
Rl

Rl +Ri +Rr
(vr − vl),

vmr = v3 − vr =
Rr

Rl +Ri +Rr
(vl − vr),

where vml is the potential induced across the left membrane resistance, and vmr is the
potential induced across the right membrane resistance. First, observe that hyperpolariza-
tions occur at the side of the greater extracellular voltage, and depolarizations occur at
the side of the smaller extracellular voltage. If vl > vr, for instance, the induced potential
will be negative across the left membrane resistance, corresponding to a hyperpolarization,
and positive across the right membrane resistance, corresponding to a depolarization. This
property, which is analogous to the cosine proportionality of Vm above, is illustrated with
voltage profile plot similar to that of Figure 3-5. A discretized version of the plot may be
produced if the distance variable z is replaced with node numbers. The plot in Figure 3-7
was produced in this manner with Rl = Rr = 1011Ω, Ri = 4×107Ω, and vr = −vl = 1.5mV .
These values were chosen so that induced voltages would be comparable to those of the three
dimensional model along its z-axis: Ri is the resistance of a cylindrical “core” of conduc-
tivity σi (see Table 3.2), cross-sectional area 1µm2 and length 20µm; Rl and Rr are the
resistances of a 1µm2 area patch of membrane; and vr and vl are the extracellular voltages
at z = ±R, respectively, in Figure 3-5. As before, the dashed vertical lines represent the
cell membrane.
Second, the transmembrane potentials induced in the 1-d circuit model decrease with de-

creasing membrane resistance. The analogous property for cell body model is that Vm ↓ 0
as Gm ↑ ∞. As Rl and Rr become comparable to Ri, the voltage drops over the three
resistances become comparable. If the voltage drop vl − vr were unchanged, the jumps
in potential across the cell membrane resistances would decrease. We have stated above,
however, that a change in cell model properties can result in a change in the extracellu-
lar voltages created by an extracellular electrode. Consider figure 3-8a, which was created
by increasing Gm by a factor of 10,000. The extracellular voltage at z = R has dropped
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Figure 3-7: Voltage profile for circuit model of cell body.

slightly to 1.38mV. Thus, increasing the membrane conductance actually shrinks the in-
duced transmembrane potentials in two ways: (1) by reducing the total voltage dropped
across the cell model diameter; and (2) by causing an increased fraction of this voltage to
be dropped across the intracellular resistance. A plot of node voltages for Rl = Rr = 107Ω,
Ri = 4 × 107Ω and vr = −vl = 1.38mV is shown in Figure 3-8b to illustrate the effect of
low membrane resistance in the circuit model.
Third, the transmembrane potentials induced in the circuit are proportional to the total

voltage applied across it, vl − vr. This explains the remaining two properties. The total
voltage established across the sphere is proportional to both the applied electric field Eo

and the radius R. Thus, Vm is proportional to both of these quantities. Note that if the
voltages vl and vr are equal, no depolarizations or hyperpolarizations will be created. The
corresponding voltage profile will be entirely flat, since v2 = v3 = vl = vr in such a case.

Generalization

The potential averaging property of the simple circuit model of Figure 3-6 may be gener-
alized to an arbitrary number of conductances and voltage sources. This suggests a model
such as that of Figure 3-9, where each conductance represents a differentially small patch
of membrane and each voltage source represents the extracellular voltage at that patch.
The intracellular resistances are assumed to have negligible effect on intracellular potential
averaging, and are left out of the model. Comparison of Figures 3-5 and 3-8a suggest that
this assumption is reasonable for the cell body model. The model may be used for an
arbitrarily shaped cell provided that such intracellular resistances are small.
If Gj is the conductance of patch j and Vj is the extracellular potential, as labeled, we

have
Vmj =

∑n
i=1Gi(Vi − Vj)∑n

i=1Gi
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Figure 3-8: Voltage profiles for (a) spherical cell body model with membrane conductance
increased 10000-fold; (b) circuit model with Rl and Rr comparable to Ri.
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for the induced transmembrane potential. Note that Vmj will be small in areas where Gm is
relatively large. This is because at patch j, Gj appears in the denominator of Vmj , which it
dominates (by assumption), but is multiplied by zero in the numerator. This result has two
important implications. First, for cells with spatially nonuniform membrane conductances,
smaller transmembrane potentials will be induced in areas of higher conductance. Second,
if the extracellular potentials are near some voltage Vj over a significant fraction of the cell’s
area, the induced transmembrane potentials will tend to be small in those areas. In this
case, the total conductance path associated with Vj will appear large, since it represents a
parallel combination of several patch conductances.
This second phenomenon may occur when a cell body stimulated with a point electrode,

as in Figure 3-10. The electrode has a needle-like tip which is connected to the negative
terminal of a current source. The return path for the current is assumed to be very far
away. A potential profile characterized by a sharp, localized drop under the electrode tip is
created in the extracellular space, as drawn in the trace labeled Ve in the lower portion of
the Figure. Assume this potential drop occurs within a distance comparable to or smaller
than the diameter of a cell body. Qualitatively speaking, the extracellular potentials in the
vicinity of the electrode will vary more rapidly in the horizontal direction (as drawn) than in
the vertical direction. In such a case, the vertical walls of the cell (emphasized with dotted
lines in the Figure) will be at roughly the same extracellular potential. Remembering that
the cell is a three-dimensional structure, it is clear that the side walls of the cell constitute
a dominant fraction of its surface area. Thus the extracellular potential at these regions
sees a large membrane conductance. For this reason, the induced intracellular potential
profile (dotted line trace in Figure 3-10) will average out to a value which is close to the
extracellular potential near the side walls of the cell. On the other hand, the membrane
area directly beneath the electrode constitutes a small fraction of the cell’s surface area, and
thus represents a small conductance. The induced intracellular potential in this region will
average out to a value which is relatively far from the local extracellular potential. Since the
induced intracellular potential is much greater than the extracellular potential, this area of
membrane is strongly depolarized by the point electrode. The actual intracellular voltage
is found by adding the induced intracellular potentials to the rest potential Vr, yielding the
Vi trace.
Small changes in intracellular potential occur due to intracellular resistances. Since in

cell bodies these resistances act over short distances and more or less in parallel, they do
not significantly affect the potential profiles. By contrast, intracellular resistances in axons
occur over long distances and in series. As we will see in the next section, this dramatically
alters the way extracellular voltages induce transmembrane potentials.

3.3 Axon in a longitudinal field

For applied electric fields with components longitudinal to an axon, it is useful to examine
the cable model shown in Figure 3-11. The axon model is assumed to be of (doubly)
infinite length. The axonal membrane is represented as a distributed series of resistances
and capacitances in parallel, separated at the interior of the cell by an axial resistance.
There are many variables associated with this model, which are listed in Table 3.3 for
reference. The variable meanings are also illustrated in the circuit diagram of Figure 3-12.
All currents and potentials are assumed to be radially symmetric, and all currents flowing
through the membrane are assumed to flow in a radial direction only. Note that several
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Figure 3-11: Schematic of axon in a longitudinal field.

Variable Name SI Unit
Vm(z, t) Transmembrane potential Volts
Vi(z, t) Intracellular potential Volts
Ve(z, t) Extracellular potential Volts
Ii(z, t) Intracellular axial current Amperes
km(z, t) Membrane current per unit length Amperes/meter
ri Intracellular resistance per unit length Ohms/meter
gm Membrane conductance per unit length Siemens/meter
cm Membrane capacitance per unit length Farads/meter
λc Space constant meters
τm Time constant seconds
z Length variable meters

Table 3.3: Cable model variables defined.

of the variable expressions are multiplied by ∆z. Since these variables are given in “per
unit length” units, multiplication by some length is necessary to give the circuit element or
current the correct units. Note also that no assumptions about the extracellular medium
were made to arrive at the circuit model; the voltages at the extracellular nodes are strictly
set by Ve(z, t). To determine the actual values of Ve(z, t), on the other hand, one must know
the stimulating electrode configuration, the stimulus waveform and amplitude, the electrical
properties of the extracellular medium, and the electrical properties of the axon. Even with
such knowledge, however, an analytical solution for Ve(z, t) is not guaranteed. Therefore,
following a few initial derivations and remarks, a simple time-independent extracellular
voltage will be assumed (see Figure 3-14a).
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Figure 3-12: Cable model variables illustrated.

3.3.1 Cable equation for extracellular stimulation

Using Kirchoff’s Current and Voltage Laws, three equations can be written for the circuit
of Figure 3-12 which, in the limit where ∆z approaches zero, become

∂Vi(z, t)
∂z

= −Ii(z, t)ri, (3.16)

∂Ii(z, t)
∂z

= −km(z, t), (3.17)

km(z, t) = cm
∂Vm(z, t)

∂t
+ gmVm(z, t). (3.18)

Equations (3.16)-(3.18) can be combined to form a single equation,

−λ2c
∂2Vi(z, t)

∂z2
+ τm

∂Vm(z, t)
∂t

+ Vm(z, t) = 0, (3.19)

where

λc =

√
1

gmri
(3.20)

is the length constant of the axon, and

τm =
cm

gm
(3.21)

is the time constant. Now, noting that

Vm(z, t) = Vi(z, t) − Ve(z, t) (3.22)
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and that the second partial derivative operator is linear, add λ2c
∂2Ve(z,t)

∂z2 to both sides of
equation (3.19) to obtain

−λ2c
∂2Vm(z, t)

∂z2
+ τm

∂Vm(z, t)
∂t

+ Vm(z, t) = λ2c
∂2Ve(z, t)

∂z2
. (3.23)

This partial differential equation in Vm provides a useful tool for the analysis of extracel-
lularly applied electric fields. Rubinstein and Spelman used a similar equation to calculate
the response of Vm to a two-dimensional impulse Ve(z, t) using transform methods[52]. This
impulse response may be convolved both in space and time to determine the circuit model
response to an arbitrary extracellular potential distribution.

3.3.2 Activating function

Equation (3.23) suggests that Ve itself is not the fundamentally important quantity for
inducing transmembrane potentials in the axon model. Rather, the second spatial derivative
of the extracellular potential can be thought of as the “drive term”. For this reason, the
function was dubbed the activating function by Rattay[48]. Define the activating function

fa(z, t) =
∂2Ve(z, t)

∂z2
(3.24)

and substitute into the previous result to obtain

−λ2c
∂2Vm(z, t)

∂z2
+ τm

∂Vm(z, t)
∂t

+ Vm(z, t) = λ2cfa(z, t). (3.25)

The activating function has important implications for extracellular electrical stimula-
tion. If the applied extracellular potential depends on z and t only, then by the definition
of the electric potential we have

Eo(z, t) = −∂Ve(z, t)/∂z

for the applied electric field. Taking a partial derivative in z on both sides of the above
relation and using the definition of activating function, we have

fa = −∂Eo(z, t)/∂z.

This means that the extracellular electric field must have a nonzero first derivative in the
axon’s longitudinal direction in order to induce transmembrane potentials. In contrast,
recall from section 3.2 that only a spatially constant electric field was required to induce
transmembrane potentials in the cell body model.
This fundamental difference in mode of activation can be explained on the basis of

geometrical considerations. First, consider the cell body model. Since the spherically shaped
intracellular fluid resembles a collection of short-length resistors in parallel with one another,
its lumped intracellular resistance is small. Furthermore, the inside of the cell model is at a
roughly constant potential due to the low intracellular resistance. Because the intracellular
potential is constrained to be constant, transmembrane potentials will be induced at some
points on the model if its external surface is not equipotential. Finally, a uniform electric
field is sufficient to create a non-uniform extracellular potential distribution. Now consider
the axon model geometry. The intracellular fluid resembles a long, series connection of
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resistors. For this reason, intracellular resistances in the axon model are substantial. If just
the right amount of current is flowing inside of the axon, the intracellular potentials can
track the linearly varying extracellular potentials created by a constant electric field. Thus,
a spatially constant extracellular electric field is not sufficient to induce transmembrane
potentials in the axon model. Of course, current must flow into and out of the axon model
at some locations; transmembrane potentials are necessarily induced at these locations. If
the axon model is of infinite length - the case that is examined in this thesis - transmembrane
current flow will only occur in or near regions where the extracellular electric field has a
nonzero first spatial derivative (see, for example, Figure 3-16). If the axon model is of finite
length, transmembrane currents might flow through the ends of the model.
The response of Vm may be found for the two-dimensional (in z and t) impulse activating

function and convolved to find Vm for an arbitrary fa. Since we are concerned with the
steady-state case in this thesis, however, only the time-independent impulse response will
be derived.

3.3.3 Time-independent solutions

In cases where the applied electric field is not changing with time and all transients have
died out, equation (3.25) reduces to

−λ2c
d2Vm(z)

dz2
+ Vm(z) = λ2cfa(z). (3.26)

Solutions of this time-independent cable equation may be found for an arbitrary extracel-
lular electrode configuration if we obtain its impulse response. Let the activation function
be a spatial impulse in z,

fa(z) = Eoδ(z). (3.27)

First solve the homogeneous equation

−λ2c
d2V̂m

dz2
+ V̂m = 0,

where the “hat” notation has been introduced to denote the impulse response of the in-
duced transmembrane potential. This equation can be solved using standard techniques for
ordinary differential equations with constant coefficients. Let

V̂m = Aepz.

Substituting this expression into the homogeneous equation and solving for p, we find that

p = ± 1
λc

.

Solutions of this form apply in regions where the drive is zero, i.e. on either side of the Vm

axis, so

V̂m =

{
A1e

−z/λc +A3e
z/λc for z > 0,

A2e
z/λc +A4e

−z/λc for z < 0.
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Since the axon model is infinitely long, on physical grounds we expect the transmembrane
potential to decay to zero far away from the stimulus. A3 and A4 must then be zero, leaving

V̂m =

{
A1e

−z/λc for z > 0,
A2e

z/λc for z < 0.

It will now be shown that V̂m must be continuous at the origin. Suppose the opposite is
true, implying that A1 �= A2. The first spatial derivative of the transmembrane potential
will contain an impulse, and the second spatial derivative will contain a doublet. On the
other hand, substituting the drive term, equation (3.27), into the time-independent equation
yields

−λ2c
d2V̂m

dz2
+ V̂m = λ2cEoδ(z).

Since this equation contains no doublets, V̂m must be continuous at the origin. Letting
A1 = A2 = A, we have

V̂m = Ae−|z|/λc .

The coefficient A can be found by the impulse matching argument illustrated in Figure 3-13
and is

A =
λcEo

2
.

Finally, the transmembrane potential created by a spatial impulse activating function is

V̂m =
λcEo

2
e−|z|/λc . (3.28)

3.3.4 Interpretation of the time-independent solutions

Recall the stimulus paradigm illustrated in Figure 3-2b. In order to determine the trans-
membrane potentials induced in the axon model by the parallel plates, it will be necessary
to find the associated activating function. Consider the profiles plotted in Figure 3-14.
Neglecting both fringing and also the influence of the axon model on the extracellular volt-
age, current will pass between the plates uniformly in the horizontal direction. Extracellular
voltages will be constant outside of the plates where no current is flowing, and decrease lin-
early with z between the plates at z = −d/2 and z = d/2, as drawn in Figure 3-14a. The
corresponding electric field profile is drawn in Figure 3-14b, and the activating function in
Figure 3-14c. The activating function is simply two impulses of equal area Eo and opposite
magnitude. Since the circuit model for the longitudinal axon is linear and time-invariant,
we can find the total response of the induced transmembrane potential for this activating
function by superposing two impulse responses of opposite magnitude and separated by a
distance d. Thus

Vm(z) =
Eoλc

2
(−e−|z+ d

2
|/λc + e−|z− d

2
|/λc). (3.29)

It is clear from the plot of Figure 3-15a that, if d � λc, the individual impulse responses
at z = −d/2 and z = d/2 appear distinctly. The point of maximal depolarization - the
physiologically significant feature - occurs at z = d/2. As d is decreased, the individual
impulse responses tend to cancel each other out as shown in Figure 3-15b. The total
amount of maximal depolarization decreases, but still occurs at z = d/2. The value of this
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Figure 3-13: Impulse matching to solve the time-independent cable equation for extracellular
stimuli. The area of the impulse in plot (c) must be equal to −Eo.
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58



-10 -8 -6 -4 -2 0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

1.5

z

V
m

hyperpolarization

depolarization

(a)

-10 -8 -6 -4 -2 0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

1.5

z

V
m

hyperpolarization

depolarization

(b)

Figure 3-15: Transmembrane potential profiles for plate spacing (a) d = 10λc; (b) d = λc.
Eo = 2 and λc = 1 were used to produce plots.

depolarization is given by

Vm|z=d/2 =
Eoλc

2
(1− e−d/λc). (3.30)

Note that the depolarization is maximal when d is infinitely large and decreases to zero as
d goes to zero. In addition, the above relation allows us to predict the amount of electric
field needed to produce a depolarization Vm,o:

Eo =
2Vm,o

λc
/(1− e−d/λc). (3.31)

Potential averaging property

As in the case of the spherical cell body model, induced transmembrane potentials are
the result of an averaging process. To see this, let h(z) be the transmembrane potential
induced by an impulse of extracellular voltage Ve = δ(z). This response is found by taking
the second spatial derivative of equation (3.28) and neglecting the coefficient Eo, yielding

h(z) =
1
2λc

e−|z|/λc − δ(z).

Now note that the induced transmembrane voltage for arbitrary extracellular voltages may
be found from the convolution integral

Vm(z) =
∫ ∞

−∞
Ve(ξ)h(z − ξ)dξ.
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Figure 3-16: Extracellular (solid line) and intracellular (dashed line) voltages for parallel
plate electrode with λc = 1, d = 10λc, and Eod = 2. Intracellular potentials are found by
adding the extracellular potentials to Vm.

Substituting the impulse response into the convolution integral yields

Vm(z) =
∫ ∞

−∞
Ve(ξ)
2λc

e−|z−ξ|/λcdξ − Ve(z).

And, finally, substituting equation (3.22) for Vm, we have

Vi(z) =
∫ ∞

−∞
Ve(ξ)
2λc

e−|z−ξ|/λcdξ. (3.32)

Inspection of equation (3.32) reveals that the intracellular voltage at some location z along
the axon consists of a weighted sum of the extracellular potentials. Furthermore, the weight-
ing function is greatest at the “observation point” z, decreases monotonically and symmet-
rically as you move away from z, and has area 1. The potential averaging process
implied by equation (3.32) is illustrated in Figure 3-16. The intracellular and extracellular
potentials differ only near breakpoints (|z| ≈ 5) where the extracellular potential is not the
average of its neighboring values.

3.4 Comparison of thresholds

In the previous two sections, linear models were used to obtain closed-form solutions for the
induced transmembrane potential. By assumption (see section 3.1), these models are valid
only when the transmembrane potential is below some fixed threshold. Let this threshold
be denoted by Vm,th, and assume that it is the maximum depolarization produced when
an electric field Eth is established between the electrode plates. Suppose also that the
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Vm =
3σiσeR

σiGmR+ 2σeGmR+ 2σiσe
Eo cos θ

Vm =
2σiσeR

σiGmR+ σeGmR+ σiσe
Eo cosφ

Vm(z) =
Eoλc

2
(−e−|z+ d

2
|/λc + e−|z− d

2
|/λc)

Figure 3-17: Summary of analytical derivations; transmembrane potentials for cell body in
a uniform electric field (top), axon in a uniform, transverse field (middle) and axon in a
longitudinal field (bottom).
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maximal depolarization produced by an electric field Eo is denoted Vm,max. Express these
relationships as

Eth −→ Vm,th,

Eo −→ Vm,max.

Without loss of generality, we can write

Vm,max = kVth,

where k is an arbitrary real number. Thus, to produce the threshold depolarization, we
wish to find the stimulus which yields Vth = Vm,max/k. Since our models are linear, we
have

Eo

k
−→ Vm,max

k
= Vth.

Substituting for k in this last result, we have

Eth =
Vth

Vm,max
Eo. (3.33)

From equation (3.33), we see that the threshold electric field is inversely proportional to the
maximum depolarization induced in the linear models by a (fixed) stimulating field Eo. This
fact will now be used to compare the thresholds for generating action potentials using the
three stimulus paradigms of Figure 3-2.
A summary of the steady-state induced transmembrane potentials for the stimulus

paradigms is provided by Figure 3-17. As discussed at the beginning of this chapter, the
derivation and interpretation of the transmembrane potentials induced in an axon model
by a uniform, transverse field are quite similar to those for the spherical cell body model.
This analysis was therefore left out of the chapter, and may be found in Appendix A.2.
Using an axon radius of Ra = 0.5µm[26]4, a cell body radius of Rcb = 10µm[26] and the

electrical parameters listed in Table 3.2, it can be shown that

Vmcb ≈ 1.5RcbEo cos θ,

Vmta ≈ 2RaEo cosφ,

where the subscript cb refers to the cell body and the subscript ta refers to the axon in a
transverse field. Now consider the maximum levels of depolarization induced in the three
models by the parallel plate electrode. For the cell body model, this occurs at θ = 0, for the
axon in the transverse field at φ = 0, and for the axon in the longitudinal field at z = d/2.
The maximum depolarizations are given by

Vmcb,max = 1.5RcbEo,

Vmta,max = 2RaEo,

Vmla,max =
Eoλc

2
,

where the last formula applies for the case where d is much larger than the space constant.

4Radius of a rabbit retinal ganglion cell axon. See footnote 3.
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Cell body vs. axon in transverse field

Taking the ratio of maximal depolarizations of the cell body and the axon in a transverse
field yields

Vmcb,max

Vmta,max
= 0.75Rcb/Ra = 15.

Thus, the relative amount of transmembrane potential induced in the two models by the
uniform electric field is proportional to the ratio of cell body radius to axonal radius.
Using the radii given above, this ratio of depolarizations turns out to be 15. This result is
qualitatively consistent with the discussion of section 3.2.3, where it was concluded that the
total amount of polarization created in a cell body model was proportional to its radius. In
light of equation (3.33), the threshold for stimulating axons with a transverse field will be
15 times higher than that for stimulating cell bodies.

Axon in longitudinal field vs. axon in transverse field

In general, an extracellular electric field will have components longitudinal to an axon as well
as transverse to it. We can compare the relative effects of the two electric field components
by taking the ratio

Vmla,max

Vmta,max
= λc/4Ra ≈ 56.

To determine this ratio numerically it will be necessary to determine the length constant
λc of the axon model. This may be found from the definition given by equation (3.20) and
by noting that gm ≈ Gm(2πRa) and ri = 1/σiπR

2
a.

λc =

√
σiRa

2Gm
.

Using the numbers in Table 3.2, λc is calculated to be about 112µm. Plugging in the values
for the axonal radius and length constant yields a depolarization ratio of about 56. The
threshold for stimulating axons with a transverse field will therefore be 56 times higher than
that for stimulating the axon with a longitudinal field.
An important distinction must be made when considering this comparison, however.

Only a spatially constant electric field Eo is required to induce depolarizations in the axon
when the field is applied transversely to it. By contrast, spatial gradients in Eo are necessary
to induce transmembrane potentials when the field is longitudinal to the axon. To put
it precisely, the ratio computed above is a comparison of the depolarization created by
a uniform, transverse electric field and that created by a step in electric field of equal
magnitude in a direction longitudinal to the axon.
Is this a reasonable comparison to make? I believe so for two reasons. First, consider

the vast difference between the radius R ≈ 0.5µm of an axon and the length constant
λc ≈ 112µm. A transversely applied field may be considered uniform if it does not change
significantly within several radii of the axon, whereas a longitudinally applied field may
be considered uniform if it does not change significantly over the course of several length
constants. Since λc � R, spatial gradients in electric field will more likely be of consequence
in the longitudinal direction than in the transverse direction. Second, the comparison may
simply be viewed as that between two stimulus paradigms. The ratio computed above
is simply an expression of the relative effects of the same electrode configuration in two
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different orientations.

Axon in longitudinal field vs. cell body

The depolarizations created in the cell body model and the axon model in a longitudinal
field may be compared by taking the ratio of the previous two ratios,

Vmla,max

Vmcb,max
≈ 56/15 ≈ 4.

Thus the parallel plate electrode is almost four times more effective in depolarizing the axon
model than the cell body model. Furthermore, the threshold for stimulating cell bodies will
be about four times that for stimulating axons with a longitudinal field.

3.5 Limitations of approach

A large number of assumptions were made to arrive at the analytical results of this chapter.
To determine the quantitative effect that these assumptions will have on the derived results
would be beyond the scope of this thesis. Instead, the purpose of the following section is to
acknowledge the more critical of our assumptions and discuss their drawbacks.

3.5.1 Nonlinearity of the cell membrane

The consequences of ignoring active and nonlinear responses of nerve membranes were
discussed in section 3.1. To recapitulate, passive and linear models fail to reproduce the
familiar resting potential and action potentials. Linearizing the electrical properties of cell
membranes about the rest potential permits the use of straightforward analytical techniques
to determine the effects of extracellular electric fields. Analysis of this type reveals how and
where membrane depolarizations and hyperpolarizations will be induced in cell body and
axon models by an extracellular stimulus. In order to determine the relative excitability
of cells in the three stimulus paradigms, it was assumed that the linear models were valid
until a fixed threshold depolarization was reached. There are several indications that the
threshold for extracellular stimulation may depend on the time pattern of the stimulus (see
below). This may not be an issue if the stimuli used in the three paradigms have the same
time pattern. On the other hand, linear models are only valid up until some fraction of the
threshold.

3.5.2 Time-dependent behavior

In this chapter, only steady-state responses were examined. Experimental nerve prepa-
rations involve time-dependent stimuli (even a constant stimulus must be turned on at
some point) and time-dependent cellular responses. How might the approach of this chap-
ter be generalized to account for time-dependent behavior? If the linear approximation
were valid up to some fixed threshold, a simple approach could be taken: calculate the
time-dependent responses of the different models for a time-dependent electric field, and
determine excitability based on how much time and field strength are needed to produce
the threshold depolarization in each of the models. Does there exist a critical threshold
depolarization at which action potentials are always produced? To answer this question,
consider the phenomenon of accommodation and the strength-duration relation.
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Accommodation

A step in applied current may cause a nerve cell to activate, while a slow ramp attaining the
same final value of current does not[63]. Clearly, this accommodating behavior demonstrates
that the time pattern of a stimulus is critical in determining whether or not a cell will
be excited. Note that, for both “slow” and “fast” stimuli, the same amount of steady-
state depolarization would be produced in a linear model of a cell. This suggests that the
threshold for generating action potentials is dependent on the time pattern of the stimulus.
On the other hand, it is well known that as threshold is approached, linear models of cells
break down. If this were the case, the same steady-state applied current might not produce
the same depolarization for the two types of stimuli.

Strength-duration relation

A common finding in electrophysiological experiments is that, when using a square pulse of
current, the threshold strength required to elicit action potentials is a function of the pulse
duration. Many strength-duration curves fit the empirical equation

Ith = Ir(1 + C/T )

, where Ith is the threshold current, Ir is the rheobase current, T is the pulse duration,
and C is called chronaxie[46]. Note that for pulse durations which are small compared to
the chronaxie Ith ≈ IrC/T . Thus there is a threshold charge Qth = IthT = IrC which is
independent of T for small T . Suppose this charge is applied to the inside of a cell with
lumped capacitance CM = 4πR2Cm, as in Figure 3-18. A potential

Vth = Qth/CM

will be established across the membrane. Thus, for intracellular stimuli of short duration,
the cell membrane demonstrates a fixed membrane potential at which action potentials will
be generated. This fact is rigorously demonstrated by Weiss for the space-clamped Hodgkin-
Huxley model of the squid axon[63]. Furthermore, the strength-duration is approximated
over the entire range of durations with a parallel RC model of the cell membrane which
charges up to a fixed threshold[63].
Unfortunately, interpreting the strength-duration relation is less straightforward for ex-

tracellular stimuli. In contrast to charge applied intracellularly to a cell body or space-
clamped axon, extracellularly applied charge will not build up uniformly against cell mem-
branes. As a consequence, lumped-parameter circuit models must be replaced with dis-
tributed models such as those used in the previous sections. The time constants of the linear
models analyzed in this chapter are determined in appendices A.1,A.2.3 and B. These are
summarized in Table 3.4. The time constants of the spherical cell model and axon in a
transverse field are so small that such models reach steady-state within a microsecond. If
the membranes generated action potentials at a fixed threshold Vth as hypothesized above,
it would be difficult to explain changes in threshold for pulse durations much greater than
a few microseconds with these models. This is not consistent with the fact that chronaxies
determined in extracellular stimulation experiments are typically tens of microseconds or
more[45]. The time constant for the model of the axon in a longitudinal field is substan-
tially larger, and might in fact be consistent with the notion of a fixed threshold. McNeal
numerically determined the strength-duration curve for a Frankenhauser-Huxley model frog
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Figure 3-18: Intracellular stimulation with square pulses of current.

Model Time constant
Cell body 225ns
Axon/transverse field 12.5ns
Axon/longitudinal field 0.4ms

Table 3.4: Time constants for different models.
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myelinated nerve which was stimulated by a monopolar spherical electrode located 1mm
away from one of the nodes. McNeal’s calculations, however, fail to demonstrate a constant
voltage threshold, even at pulse durations as low as 10µs. It is unclear whether this behav-
ior is a property of the electrode configuration, the Frankenhauser-Huxley equations, or a
combination of both.

In light of what is known about accommodation and the strength-duration relation, the
threshold depolarization for generating action potentials appears to depend on the time
pattern of the stimulus used.

3.5.3 Role of the cell in determining the extracellular voltage

In cases where circuit models were analyzed (see Figures 3-9 and 3-12) it was assumed
that the extracellular voltage produced by the stimulating electrode was not deformed by
the presence of the cell. It is clear, however, from the electroquasistatic models that this
approximation is weakest in the region of greatest interest to the circuit models: immediately
outside the cell. For example, the extracellular voltage in Figure 3-5 deviates maximally
from a straight line at |z| = R.

3.5.4 Inhomogeneity of biological tissue

To determine the extracellular electric field produced by the parallel plate electrode, it was
assumed that cells reside in a homogeneous extracellular medium. In general this is not the
case. In the retina, for example, the extracellular space between its neural and glial cells is
confined to gaps about 20nm wide (see chapter 2).

3.5.5 Anode-break excitation

A common phenomenon in electrophysiology occurs when a hyperpolarizing extracellular
stimulus (an anode) is suddenly turned off[63]. Cells have been known to activate in some
such cases, indicating that depolarizing a cell’s membrane is not the only way to generate
action potentials.

3.5.6 Non-uniformity of the cell membrane

It has been asserted that light evoked action potentials are initiated at the initial segment
of amphibian retinal ganglion cell axons [7]. Studies yielding similar results for extracellular
electrical stimulation of nerve cells have been cited by Ranck[46]. The existence of such
“trigger zones” indicates that cell membranes may not have uniform electrical properties.
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Chapter 4

Electrode Design

In this thesis we are interested in preferentially stimulating retinal ganglion cell bodies.
Ideally, current delivered by our stimulating electrode will produce action potentials in cell
bodies while evoking only passive responses from nearby axons. Thus in the ideal case the
threshold for stimulating axons will be much higher than that for stimulating cell bodies.
Our design strategy is based on the assumption that the depolarization produced in the

linear models is inversely related to the threshold for generating action potentials. It was
found in chapter 3 that depolarizations could be induced in a spherical cell body model by
a spatially uniform electric field. Due to the symmetry of the model, the orientation of the
electric field is arbitrary. On the other hand, the depolarizations induced in the axon model
depend strongly on the electric field orientation. A uniform electric field crossing the model
in a transverse direction is sufficient to induce a depolarization, whereas a field parallel to
the model must have a nonzero first derivative in that direction.
These results suggest that a stimulating electric field with carefully chosen spatial prop-

erties might provide some selectivity for cell bodies over axons. The spatial pattern of the
electric field will be determined to a large extent by the geometry of the stimulating elec-
trode. We therefore view the problem of selective stimulation as one of choosing the right
electrode geometry.
This chapter is divided into three sections. The first section describes an electrode

geometry which we believe will preferentially stimulate cell bodies. The second section
provides the details of how the electrode was constructed. Finally, the third section discusses
a model for predicting the electric field produced by the electrode.

4.1 Geometry

Consider the ideal parallel plate electrode analyzed in the previous chapter. Suppose a single
axon model, oriented parallel to the plates, and a single cell body model reside between the
plates of this electrode. If the cell body and axon models are far enough apart that they
may be considered “in isolation”, then the results of section 3.4 are applicable to this case.
It was found in that section that the depolarization in each of the models is proportional to
its size. Since the constants of proportionality are similar and ganglion cells are somewhat
larger than axons, the amount of depolarization created in the cell body model is greater
than that in the axon model. Furthermore, since the plates in this case are arbitrarily large,
the applied electric field will have no component longitudinal to the axon model. Thus no
additional depolarization will be created by longitudinal effects.
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Figure 4-1: Schematic of parallel plate electrode in two different orientations relative to the
retina. (a) Plates oriented perpendicular to the retinal surface; (b) Plates oriented parallel
to the retinal surface. Abbreviations: r - retina; a - axon; cb - cell body.

Figures 4-1a and 4-1b illustrate how we apply this reasoning to stimulation of retinal
cells. In the Figure, large parallel plate electrodes are arranged in two different orientations
relative to the retina. The axon, which projects perpendicular to the page in both cases,
is parallel to the plates. Our (admittedly simplified) model posits the retina as a linear,
isotropic, and homogeneous conductor. In addition, the cell body and axon models are
assumed to be far enough apart to be considered in isolation. Under these assumptions and
based on the comparison of section 3.4 above, we might expect to find lower thresholds for
cell bodies than for axons with the parallel plate electrode.
Unfortunately, this electrode is impractical for use with a retinal implant. The orien-

tation shown in Figure 4-1a is undesirable because it penetrates the retina, which would
damage the tissue. The orientation in Figure 4-1b is undesirable because it places a plate
on either side of the retina. By contrast, the implant’s stimulating electrodes will all reside
at the inner surface. Furthermore, due to their large size, both electrode configurations
will influence the cells over vast regions of the retina. The implant, on the other hand,
is to be used to stimulate cells in localized regions. Thus, alternatives to the electrode
configurations of Figure 4-1 must be found.
One such alternative is to approximate the electrode of Figure 4-1a by using only its

cross-section in the plane of the retina. This cross-section consists of two parallel, infinitely
long wires. Limiting the length of the wires results in the electrode shown in Figure 4-2.
If the wires’ length is substantially larger their spacing, there will be regions of uniform
electric field between the wires. By the reasoning presented above, this electrode might also
be used to preferentially stimulate ganglion cells.
Some warnings must be made regarding the approximation of Figure 4-2. First, unlike

the parallel plate electrode, the strength of electric field created by this electrode will
decrease with distance from the retinal surface. Electric fields passing through nearby axons
will be stronger than those passing through the more distant cell bodies. The applicability
of the comparison of section 3.4 to the electrode of Figure 4-2 therefore depends on how
rapidly the electric field decays with distance. Second, as suggested in the Figure, there
will be fringing of the electric field around ends of wires. If all retinal axons were centered
exactly between wires, fringe fields would cross the axons in a purely transverse direction.
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However, in addition to the single axon drawn in the Figure, there are many other ganglion
cell axons at the inner retinal surface. Fringe fields will produce longitudinal effects in axons
which are closer to one or the other of the wires, perhaps increasing the total amount of
depolarization created by the electrode. Thus, axons directly under the wires might be just
as likely or even more likely to be stimulated than the cell bodies beneath them.
The disadvantages inherent in the parallel wire geometry are hard to quantify without a

detailed knowledge of the electric field it produces. A model for predicting the field will be
proposed in section 4.3. Electrodes were constructed in the absence of this knowledge, with
the thought in mind that their ultimate effectiveness (or lack thereof) would be determined
in experiments.

4.2 Construction

Electrodes with the geometry of Figure 4-2 were constructed by the author at MIT Lincoln
Laboratory during the summer of 1993 and the month of January, 1994. Note that only the
general shape of the electrode is indicated by the reasoning above. The additional variables
of materials and size must be determined in order to completely specify the electrode.
A number of factors including biocompatibility of materials, availability of materials, and
various practical considerations influenced the final determination of these less conceptually
important variables. Such factors will be discussed where appropriate in the outline of
electrode construction presented below.
The stimulating electrodes used by the retinal implant will be created using photolithog-

raphy techniques commonly employed in microelectronics fabrication. Using such tech-
niques, arrays of electrodes having complex geometries can be routinely produced. It was
decided, however, that the time and resources required for successful microfabrication made
such electrodes impractical for this thesis. A more economical though less flexible method
for producing single electrodes was employed. This method is illustrated step by step in
the six panels of Figure 4-3. Each of these steps will now be described in detail:

1. Cut a thin strip of conductor-insulator-conductor sandwich. The starting
material for the electrode was a square piece of fused silica which had been coated on
either side with a 5µm thick layer of gold (MIC Technology, Richardson, TX). Coated
substrates such as this are commonly patterned and used for high performance Hybrid
Microwave Integrated Circuits. For our purposes, this conductor-insulator-conductor
“sandwich” provided a convenient way to obtain the electrode geometry illustrated
in Figure 4-2. The shaded square and rectangle in the upper part of Figure 4-3.1
represent a head-on view of the material, before and after a thin slice was cut along
the dashed line with a wafer saw. The lower portion of Figure 4-3.1 is a cross-sectional
view showing the insulator (white) sandwiched between the two conductors (shaded).

The thickness of the fused silica in the conductor-insulator-conductor sandwich deter-
mined the electrode wire spacing (d in Figure 4-4b). This material was available in
two thicknesses, one corresponding to a wire of spacing 127µm and the other yielding
a spacing of 254µm. The length of the wires (l in Figure 4-4b) was equal to the width
of the slice in Figure 4-3.1. Presumably, the greater the wires’ length relative to their
spacing, the better the uniform field approximation between the middle portions of
the wires. Conductors could not be made arbitrarily long, however, because rela-
tively small electrode tips were required for experiments (see Chapter 5). Slices of
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Figure 4-2: Schematic drawing of parallel wire electrode. Hypothesized electric field lines,
including fringing, are drawn in. Abbreviations: a - axon; cb - cell body; ilm - inner limiting
membrane.

71



this material were cut so that the conductor length was at least 2.5 times the conduc-
tors spacing (see Table 4.1 and Figure 4-4b for a complete specification of electrode
dimensions). The width of the wires themselves was 5µm in all cases.

Early electrode designs used a copper-clad insulator to obtain the geometry of Fig-
ure 4-2. This material was abundantly available at Lincoln and could easily be cut
into thin strips using a metal shear. However, copper may react with tissue and
produce cell destruction when used in long-term experiments [12]. Even though our
experiments were short-term (12 hours at most) in nature, we decided to use gold
because it is considered “biologically inert” and therefore less likely to produce tissue
damage.

A significant disadvantage of gold is that it is relatively soft. It was often found
during electrode construction that the gold had been smeared or deformed in some
way, either in the process of being cut by the wafer saw or during tip grinding. If the
deformation was severe enough to obscure the basic parallel conductor geometry, the
electrode was discarded.

In addition to gold, several other metals are considered biologically safe, including
platinum, silver, stainless steel, and tantalum [12, 16]. Of these, only gold was readily
available in the conductor-insulator-conductor form described above.

2. Bond copper wires to the strip. Insulated copper wires were stripped of their
insulation at one end and soldered to either side of the strip obtained in step 1. Elec-
trical contacts were tested by placing an ohm-meter between each wire (insulation
removed at the other end as well) and the corresponding conductor, as depicted in
Figure 4-3.2. If the resistance was small (10Ω or less) and the solder joint was mechan-
ically robust, good electrical contact was assumed. Also, the resistance between the
two wires was checked. If this resistance was large (off the scale of the ohm-meter),
it was assumed that the two poles of the electrode weren’t shorted together.

3. Fill a glass tube with liquid epoxy. A glass capillary tube (Drummond Scientific
Co., Broomall, PA1) was then filled with Clear 2-Ton Epoxy (True Value Hardware,
Cambridge, MA). The liquid (uncured) epoxy was drawn into the thin capillary tube
by suction, as shown in Figure 4-3.3. A hypodermic needle of suitable diameter was
attached to a syringe and inserted into the tube. Duct tape (not shown) was then
wrapped around the base of the hypodermic and adjacent end of the glass tube to
form an air-tight seal. Pulling back on the plunger of the syringe created a pressure
vacuum inside of the capillary tube, drawing the epoxy up into it.

Glass capillary tubing was used in the construction of the electrodes for a several
reasons. First, encapsulating the conductor-insulator-conductor strip in the tube pro-
vided a straightforward way to electrically insulate its side faces from one another.
Filling the space between the tube and the strip with epoxy (a good insulator) as-
sured that there were no conductance paths between the side faces. This was done
to prevent such conductance paths from shunting current away from the electrode
tip. Alternatively, the strip could have been coated by dipping it in epoxy or some
other insulator. This was tried with some success, but in general the insulated strip

1Three sizes, each specified by an inner diameter (id) and an outer diameter (od) listed in Table 4.1. The
corresponding capillary tube volumes were 25, 50, and 100µL.
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Figure 4-3: Electrode construction step by step. Not drawn to scale.

was difficult to work with due to its irregular shape. The second reason for using the
glass tubing, then, was that its circular-cylindrical shape made it easy to work with.
The sanding block in Figure 4-3.6, for example, was made by simply drilling a hole of
suitable diameter in a block of teflon. Finally, the combined properties of small size,
rigidity, and electrical insulation made the glass tubing advantageous. A small tube
was needed for careful positioning of the electrode tip (see Chapter 5). In addition,
a rigid tube was needed in order to have good control over the tip as it was lowered
onto a preparation. Finally, an insulating tube was used to prevent stray coupling
between electrode wires and their housing, which could have deformed the effective
electrode geometry.

A disadvantage of using glass was that it was fragile and broke often. Metal tubes
such as hypodermic needles are small, rigid, and more robust than glass. On the other
hand, metal tubes conduct electricity, and were considered undesirable based on the
reasoning above.

4. Insert the strip. The strip prepared previously was then inserted in the tube as
shown in Figure 4-3.4. Though the strip was somewhat shorter than the tube, it
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Design d (µm) l (µm) id (µm) od (µm)
1 127 572 660 991
2 254 635 736 1080
3 254 889 991 1370

Table 4.1: Electrode tip dimensions for three designs. d - conductor spacing; l - conductor
length; id - inner diameter of the glass capillary tube; od - outer diameter of the capillary
tube.

could be inserted far into the tube by pushing on the attached wires. A small epoxy-
filled gap was left between the end of the strip and the end of the tube, as shown in
Figure 4-3.5. This was done because bubbles often formed in the epoxy at the end
of the tube as it cured. A small distance away from the end of the tube, the epoxy
cured more uniformly, filling the space between the strip and the glass.

5. Cure the epoxy. The glass capillary tube, epoxy, and strip were then heated in
an oven at 100◦C for an hour. This helped to speed the curing time of the epoxy.
After the tube was taken out of the oven, it was stored at room temperature for an
additional 24 hours to insure that the epoxy had cured completely.

6. Grind and polish the tip. Once the epoxy was dry, it could be ground down with
sandpaper. Using a sanding block as depicted in Figure 4-3.6, the end of the electrode
was sanded at a right angle until the edge of the conductor-insulator-conductor sand-
wich could be clearly seen under a microscope. At this point, the tip of the electrode
was polished by sanding with increasingly finer grades of sandpaper.

A hard-curing epoxy was required for this step. The Clear 2-Ton epoxy was chosen
because, of the epoxies tested, it cured the hardest. Even so, this epoxy may not
have been hard enough. When electrode tips were viewed under the microscope (as
in Figure 4-4a), it sometimes appeared as if the epoxy had smeared over the conduc-
tor surface. In addition, as one might observe directly from Figure 4-4, the bits of
visible sandpaper grit (see step 6) embedded in the cured epoxy indicate that it was
still substantially deformable. Furthermore, after several hours of immersion in saline
solution, the epoxy appeared to have deformed somewhat. This was evidenced by
visible peaks or valleys in the formerly flat surface of the electrode tip. Despite com-
plications with the epoxy, the electrode’s ability to pass current was uncompromised
in all cases.

Pictures were taken of some of the electrode tips upon completion. A example is shown
in Figure 4-4a. Below the picture in Figure 4-4b is a schematic drawing of the tip. Electrode
tips of three different dimensions were made. These are listed in Table 4.1
Electrodes were tested prior to animal experiments using the apparatus of Figure 4-5.

A voltage waveform Vi was established across the terminals of the circuit by the signal
generator, and the resulting current flow through the electrode (if any) was measured as
a voltage Vr across a known resistance. This provided a second check (in addition to
that performed in step 2) that the poles of the electrode were not shorted together: if
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Figure 4-4: Electrode tip. (a) Photograph of a design 2 electrode; (b) Schematic of the tip
with dimension variables labeled. The white annulus represents the edge of the capillary
tube, which has inner diameter id and outer diameter od. The rectangle in the center
represents a slice of conductor-insulator-conductor sandwich yielding wire length l. The
white rectangle in the center is the fused silica, which had thickness d, and the thin black
rectangles represent the gold wires, which in all cases were 5µm thick. The shaded region
between the strip and the capillary tube represents the epoxy. Electrode tips of three
different dimensions were made. These are listed in Table 4.1
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Figure 4-5: Apparatus for testing electrodes in saline.

the electrode was suspended in air, no direct current should flow between the poles of the
electrode when it is connected to the signal generator. The apparatus of Figure 4-5 might
also be used to determine the electrical characteristics of the electrode in physiological saline
solution.

4.3 Predicting the electric field

Preliminary attempts have been made to model the electric fields produced in the retina
by the electrodes constructed for this thesis. Such fields are produced by the flow of ions
in the biological fluid. The ionic flow is made possible by electrochemical reactions at the
electrode:solution interfaces. Our approach has neglected these interactions in the interest of
simplicity. More detailed descriptions of electrode-surface reactions and related phenomena
are found in [16, 17, 50, 56, 58].
To find the electric field produced by the electrode, Laplace’s equation must be solved

within some volume which contains the tip2. For the moment, let this volume be arbitrary,
and consider a surface which bounds it. If either the potential on the surface (Dirichlet
boundary condition) or the derivative of the potential normal to the surface (Neumann
boundary condition) is specified for every point on the surface, then a unique solution for
Laplace’s equation exists within the volume.
Now assume that the electrode tip forms one side of the bounding surface. Because they

are equipotentials, the conducting regions of the electrode tip are conveniently modeled
using Dirichlet boundary conditions. Note that the electrode is symmetrical about a line
parallel to and lying between the two wires. Due to this symmetry, the wires will be at

2As in Chapter 3, we assume that there are no fixed charges near the electrode, and that Laplace’s
equation will be solved within a material that is linear, isotropic, and homogeneous.
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Figure 4-6: Model for predicting the electric fields generated using the stimulating electrode
described in this chapter.

equal and opposite voltages when stimuli are applied. The epoxy and glass are modeled
as perfect insulators through which no current will flow. This requires that the current
density normal to the surface in such regions is zero. Since the normal current density is
proportional to the normal derivative of the potential, Neumann boundary conditions are
used to represent the non-conducting portions of the electrode tip. Assume further that the
remaining portions of the bounding surface are far away from the bipolar electrode. Like
the regions of the bounding surface representing insulators, no current will flow through
these regions. Neumann boundary conditions are therefore established at these regions as
well.
Laplace’s equation subject to the boundary conditions described above does not lend

itself readily to analytical techniques. However, we may be able to solve this problem
efficiently using a numerical algorithm. To facilitate this process, the bounding surface is
chosen to be a box. Our model for predicting the electric field produced by the electrode is
shown in Figure 4-6. An algorithm for solving this problem has not yet been implemented.
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Chapter 5

On experimental verification

Preliminary attempts were made to experimentally test the electrodes of chapter 4. A total
of seven experiments were conducted. Two of these were performed by Dr. Ralph Jensen
(Southern College of Optometry, Memphis, TN) using a small slice of the rabbit retina. This
preparation has been used extensively for other retinal implant project experiments [64],
and is described in detail elsewhere [27]. The remaining five experiments were performed
by Dr. Lyle Borg-Graham (visiting scientist at MIT during the month of February, 1994;
currently at the Institut Alfred Fessard, CNRS, Gif-sur-Yvette, France) and the author
using an isolated turtle retina preparation, also described elsewhere [4].
This chapter is divided into three sections. In the first section, three hypotheses which

might be tested in an experiment are presented. These will help to motivate the experimen-
tal procedures outlined in the second section. Results obtained using the methods described
were on the whole inconclusive. This was due in part to the relatively small number of ex-
periments conducted. More importantly, though, results were inconclusive due to several
unresolved experimental issues. These will be described in the third section of the chapter.
Such issues must be addressed in future experiments if the hypotheses are to be tested in a
conclusive manner. For the most part, results from the experiments will not be presented.

5.1 Three hypotheses

It was argued in chapter 4 that the parallel wire electrode could be used to selectively
stimulate cell bodies. This argument was based on a comparison made in section 3.4 for
the parallel plate electrode. Two additional comparisons for the parallel plates were made
in that section. These might also be applicable to the parallel wire electrode.
The comparisons assume that the spacing of the plates is much larger than the space

constant of the axon. To a first approximation, this assumption might be modified for
the electrodes of chapter 4 by requiring that the spacing of the wires is much larger than
the space constant. Does this modified assumption hold? Using “typical” values for the
electrical properties of nerve membranes, we calculated in chapter 3 that the length constant
was about 112µm. From Table 4.1, we see that the wire spacing is just over one length
constant for the design 1 electrode and about two length constants for designs 2 and 3.
Thus, the assumption does not hold strictly for the electrodes designed in chapter 4.
To bring the electrodes in line with the assumptions of chapter 3, larger wire spacings

could have been incorporated into the design. This would have required that the wire
length also be larger (see section 4.1), and the resulting electrode tip would have increased
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