
λc (µm) Plate spacing (in λc’s) Vmla,max/Vmta,max Vmla,max/Vmcb,max

112 2 (Designs 2,3) 48 3.2
112 1 (Design 1) 35 2.4
922 1/4 (Designs 2,3) 102 6.8
922 1/8 (Design 1) 54 3.6

Table 5.1: Depolarization ratios for plate spacings corresponding to the electrode designs
in chapter 4 and for two different values of the length constant. Vmla,max is the maximum
depolarization induced in an axon model by a longitudinal field, Vmta,max is the maximum
depolarization induced by a transverse field, and Vmcb,max is the maximum depolarization
induced in a cell body model.

in size. As we will see below, small electrodes were desired when positioning the stimulating
electrodes. The electrode dimensions listed in Table 4.1 represent a design tradeoff between
the constraints of large wire spacing and small electrode tip size.
Table 5.1 summarizes the depolarization ratios which result from several nonideal plate

spacings. The first and second rows of the Table present the ratios for plate spacings
corresponding to the wire spacings of the chapter 4 electrodes. The length constant used
to calculate these ratios was 112µm as before. After the electrodes were constructed, it was
discovered that the membrane conductance per unit area for ganglion cell axons may be
closer to 1/(68, 000Ω·cm2) [9], much lower than the value listed in Table 3.2. In this case,
the length constant would be 922µm. The resulting depolarization ratios for the chapter 4
electrodes are listed in the third and fourth rows of Table 5.1. Note that, even though
the plate spacings are reduced to 1/4 (designs 2 and 3) and 1/8 (design 1) of the length
constant, the depolarization ratios are larger than those listed in the first two rows. While
increasing the length constant causes a decrease in the effective plate spacing, which would
lower Vmla,max for a fixed λc, we also see from equation (3.29) that Vmla,max increases in
proportion to λc for a fixed d.
Table 5.1 suggests that for all length constants and electrode wire spacings considered,

the same qualitative differences in thresholds will be found. The analysis portion of this
thesis therefore leads to three hypotheses which can be tested in experiments using the
electrodes of chapter 4:

Hypothesis 1 The threshold for stimulating cell bodies is lower than that for stimulating
axons when the electrode wires are parallel to the axons.

Hypothesis 2 The threshold for stimulating axons is higher when the electrode wires are
parallel to the axons than when when the wires are perpendicular to them.

Hypothesis 3 The threshold for stimulating cell bodies is higher than that for stimulating
axons when the electrode wires are perpendicular to the axons.

Note that, unlike in chapter 3 or in Table 5.1, we are not predicting the relative thresholds
in quantitative terms. Due to both the large number of assumptions which were made to
facilitate analysis (see sections 3.1 and 3.5) and also to the fact that the parallel wires are
only an approximation to the parallel plates, we expect that experiments would at best
yield qualitative verification of the hypotheses.
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5.2 Outline of the experimental procedure

All experiments followed the same basic procedure. This procedure is outlined below:

1. Dissection.

Experiments were done in vitro. Retinas were removed from either rabbits, as de-
scribed in [27], or turtles, as described in [4], and mounted on a holder over which
physiological fluids were perfused. Such fluids help to prolong the life of the retina
after removal from the eye.

2. Position the recording and stimulating electrodes.

Testing the hypotheses of the previous section requires the use of two types of elec-
trodes. A stimulating electrode, such as those described in chapter 4, is used to deliver
current to a ganglion cell, while a recording electrode is used to determine if the cell
produced an action potential as a result. In all experiments, the recording electrode
was placed outside of but very close to a ganglion cell body or axon. Furthermore, the
recording and stimulating electrodes were always placed as far apart from one another
as possible to circumvent the problem of stimulus artifact, which will be discussed in
section 5.3.

Experimental efforts concentrated mainly on Hypothesis 2 above. To test this hypoth-
esis, the recording electrode was positioned near a cell body, and stimuli were delivered
to the axon at a distant location. Action potentials generated by the stimulating elec-
trode and picked up by the recording electrode in this arrangement were conducted
antidromically, or towards the cell body. The stimulating electrode was oriented so
that the wires were either parallel to the axon, as in Figure 5-1a, or perpendicular to
the axon, as in Figure 5-1b.

In order to test Hypotheses 1 or 3, it would be necessary to record action potentials
from the axon at a location near the optic disk. In this case the stimulating electrode
would be placed closer to the cell body. Action potentials generated by the stimulating
electrode and picked up by the recording electrode in this arrangement would be
conducted orthodromically, or away from the cell body. The stimulating electrode
would either be placed over the cell body, as in Figure 5-1c, or over a segment of
the axon, as in Figure 5-1d. Note that the stimulating electrode in Figure 5-1d is
oriented so that the wires are parallel to the axon. This orientation would be used
to test Hypothesis 1. To test Hypothesis 3, the electrode wires would be oriented
perpendicular to the axon (not shown).

3. Determine threshold.

The amplitude of the stimulus was then adjusted until the minimum amount of current
required to produce action potentials was found.

4. Move the stimulating electrode.

The stimulating electrode was then shifted from one of the positions and orientations
described above to another, and threshold determination repeated.
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Figure 5-1: Schematic diagrams illustrating several arrangements of the recording and stim-
ulating electrodes. Abbreviations: cb - cell body; a - axon; od - optic disk; re - recording
electrode; se - stimulating electrode; r - retina.
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5.3 Unresolved experimental issues

Several difficulties were encountered during experimentation which hindered our ability to
obtain conclusive results. Many of these point to problems with our current experimental
methods which have yet to be resolved. A discussion of these unresolved experimental issues
is undertaken in this section.

5.3.1 Stimulus artifact

When current is applied to the stimulating electrode in preparations such as those of Fig-
ure 5-1, electrical activity is invariably picked up by the recording electrode. This activity
is called the stimulus artifact. The stimulus artifact may outlast the stimulating current
itself and can be substantially larger than extracellularly recorded action potentials. The
former effect is thought to be due to saturation of recording amplifiers [46]. Because action
potentials propagate along an axon with a finite velocity, it will take a finite amount of time
for them to travel from their site of origin, near the stimulating electrode, to the recording
electrode. If the two electrodes are placed far enough apart, the artifact will have died out
by the time action potentials are recorded. This was the case for the experiments on rabbit
retina, where the distance separating the electrodes was about 1cm. If the stimulating and
recording electrodes are fairly close to one another, on the other hand, action potentials
will arrive at the recording electrode while the stimulus artifact is still dominant. This was
the case for the turtle retina experiments, where electrode separation was less than 0.5mm.
Unfortunately, the stimulating and recording electrodes could not be placed further apart
due to the small size of the turtle retina preparation. In this second case, we could not tell
whether or not we were generating action potentials because, if they were occurring, they
were obscured by the stimulus artifact.

5.3.2 Position of the stimulating electrode relative to the cell

The locations of ganglion cells were not known a priori. Had we been able to visually
identify cells under a microscope, the recording and stimulating electrodes could have been
positioned as discussed in section 5.2 in a straightforward manner. With the exception of
the rabbit retinal ganglion cell axons, however, the cells of the rabbit and turtle retinas are
completely transparent. The rabbit axons are ensheathed in white myelin near the optic
disk, but are also grouped in clusters which makes them hard to identify individually. On
the other hand, various staining techniques have been used for visualizing cell bodies. For
example, see [28]. It was found that the staining process altered the sensitivity of cells to
electrical stimuli [26]. For this reason, we did not stain ganglion cells in our experiments.
Because the locations of individual cells were unknown, a certain amount of guesswork

was required when positioning the recording and stimulating electrodes. The recording
electrode, for example, was positioned by repeatedly lowering it onto different portions of
the retina until it was close enough to a cell body or axon to record action potentials from
it reliably. This method, though at times tedious, was fairly consistent. More problematic
was the positioning of the stimulating electrode.

Position in the plane of the retina

The placement of the stimulating electrode in the plane of the retina depended in part on
the position of the recording electrode. For example, if recordings were being made from a
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Figure 5-2: Two possible positions of the cell body (white and shaded circles). A stimulating
electrode with wire spacing 254µm centered over the receptive field center (rfc).

cell body, as in Figures 5-1c and 5-1d, the path of the axon was approximated as the straight
line from the recording electrode to the optic disk. On the other hand, if recordings were
being made from an axon, as in Figures 5-1a and 5-1b, the cell body location was inferred
from the location of the cell’s receptive field center, and the axon was assumed to follow
the straight line between the cell body and recording electrode. The stimulating electrode
was placed over the desired region of retina based on these approximations.
An example will help to illustrate the potential difficulties involved in the placement

methods described above. Consider an experiment in which we wish to stimulate a ganglion
cell near the cell body, as in Figure 5-1c. The exact location of the cell body is unknown, but
the center of the cell’s receptive field can be determined by shining a small spot of light on
different parts of the retina while monitoring cellular responses with the recording electrode.
For rabbit retina, we estimate that ganglion cell bodies are within about 100µm (in the
plane of the retina) of the cell’s receptive field center [26]. Suppose that, in the absence of
more detailed knowledge of the cell body location, a stimulating electrode with wire spacing
254µm (design 2 or design 3) is centered over the receptive field center. Figure 5-2 illustrates
both the ideal situation, in which the cell body (white circle) is at the same location as the
receptive field center, and a less desirable situation, in which the cell body (shaded circle)
is displaced 100µm from the receptive field center.
The stimulating fields experienced by the cell in the two cases may be quite different,

leading to ambiguities in the interpretation of thresholds. If the cell is centered between
the wires, for instance, we might expect the uniform field approximation to be a good
one. On the other hand, if the cell is closer to one of the electrode wires, we might expect
fringing fields to be substantial (see Figure 4-2 for hypothesized stimulating fields). Since
the position of the stimulating electrode relative to the cell will determine the shape of
the effective stimulating field, we might expect thresholds to vary with electrode position.
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However, since for a given experiment the electrode position relative to the cell is unknown,
we would be unable to determine which thresholds corresponded to which positions.
Ambiguities of this sort might be eliminated if the stimulating electrode wires were

spaced far enough apart. However, increasing the wire spacing will increase the overall size
of the electrode tip. To some extent, our ability to place the electrode over the receptive
field center accurately depends on the size of the electrode tip. The larger the tip, the less
accurate electrode placement will be.
Another way to tackle this problem might be to record the thresholds at a series of

points on the retinal surface, and then try to deduce the location of a cell body or axon by
hypothesizing how the thresholds will change with position. This strategy involves moving
the stimulating electrode from its initial position, which entails additional complications.
These are considered in section 5.3.3.

Placement above the retina

The discussion thus far has focused on the position of the electrode relative to the cell in
the plane of the retina. The height of the electrode above the cell is also an important
consideration in the interpretation of threshold measurements. In general, we expect the
threshold to rise as the electrode height is increased, since an increase in the electrode-to-
cell distance is accompanied by a decrease in the effective stimulating field. In order to
impose some measure of consistency on the electrode-to-cell height, attempts were made to
place the stimulating electrode directly against the inner limiting membrane. Using such a
scheme, the variability in the vertical electrode to cell height is constrained to the variation
of cell body or axon depths within their respective layers (see Figure 2-3).
Two different methods were used to place the electrode against the inner limiting mem-

brane. In both cases, the task amounted to lowering the electrode as close to the retina as
possible without compressing so much that cell damage resulted. The first method, used
with the turtle preparation, involved lowering the electrode under visual control. As the
electrode was lowered, we watched for visible signs that the edges of the electrode tip were
compressing the retina. It was important for the electrode tip to have small diameter for
this method, so that the entire tip could be seen at a reasonably high magnification. In
general, this method was complicated by the fact that the retina itself is transparent, and
also by the fact that the optics were often blurred by the electrode tip or by the fluids
flowing over the retina. It remains unclear whether or not the electrode tip was indeed
against the inner limiting membrane when this method was used. The second method, used
with the rabbit retina, relied on threshold information to infer electrode height. Thresholds
were measured as the electrode was moved progressively closer to the retina. Up until a cer-
tain point, thresholds decreased as the electrode was lowered. When the threshold stopped
decreasing, the electrode was assumed to be apposed to or slightly compressing the inner
limiting membrane.

Control experiment

A control experiment was performed to determine the precision of the second method.
Using that method, the electrode was repeatedly lowered onto and withdrawn from the
same spot on the retinal surface using a micromanipulator. The micromanipulator could be
used to maneuver the electrode in any of three orthogonal directions, the manipulator axes.
Motion along each axis was controlled with a separate knob, and the distance moved in each

84



Trial Threshold (µA) z-micrometer (mm)
1 140 6.740
2 160 6.694
3 165 6.712
4 165 6.743

Table 5.2: Results from a control experiment conducted to determine how precisely the
electrode could be placed against the inner limiting membrane using the second method
described in the text. Lifting the electrode off of the retina corresponded to lowering the
micrometer reading. Trials are listed in chronological order.

direction could be measured from a micrometer. A single direction, which we referred to
as z and which was approximately perpendicular to the table, was used in this experiment.
Each time the final height was determined, with the electrode presumably against the
inner limiting membrane, the threshold and z-micrometer reading were recorded. Table 5.2
summarizes these results.
Several observations may be made from the Table. Most importantly, the final z-

micrometer readings for the 4 trials varied over a range of about 50µm. Assuming that
the inner limiting membrane had not moved relative to the table on which the microma-
nipulator rested, this value would ideally have been constant. Is 50µm a tolerable amount
of uncertainty? In other work, such a difference in electrode height led on the average to a
2.5-fold increase in threshold [64]. We see from Table 5.2 that the total change in threshold
over the 4 trials amounted to a less dramatic increase. However, note that in this experi-
ment the threshold did not necessarily increase with the electrode height. From Trial 2 to
Trial 3, the electrode was lowered 18µm closer to the retina while the threshold increased by
5µA. Rather than increasing with electrode height, the thresholds appear to be increasing
with time. We will return to this subject in section 5.3.4.
On the whole, the control experiment was inconclusive. Thus the precision of the second

method described above for placing the stimulating electrode against the inner limiting
membrane still remains in doubt.

5.3.3 Movement of the stimulating electrode

It was often necessary to move the stimulating electrode from its initial position and ori-
entation to another one. This might have been done to determine the location of a cell as
described above, or simply in order to shift the stimulating electrode between the arrange-
ments of Figure 5-1. In order to avoid dragging the retina, the electrode was lifted off of
the tissue before making such changes, and then then lowered again.
In order to properly interpret changes in threshold with electrode position or orientation,

we must have a detailed knowledge of how the electrode moved relative to the cell. To
illustrate this point, consider an experiment to test Hypothesis 2. Cross sectional views
of the stimulating electrode in the configurations of Figures 5-1a and 5-1b are shown in
Figures 5-3a and 5-3b, respectively. Suppose that, as drawn in Figure 5-3, the height of
the electrode has been inadvertently raised after rotation of the wires. If the threshold rose
from Figure 5-3a to Figure 5-3b, we would not be able to conclude whether the increase was
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Figure 5-3: Examples of electrode placement over the retina. (a) Electrode oriented so that
its wires are perpendicular to an axon, as in Figure 5-1a; (b) electrode oriented so that its
wires are parallel to the axon, as in Figure 5-1b. Abbreviations: a - axon; se - stimulating
electrode; ilm - inner limiting membrane; ofl - optic nerve fiber layer.

due to the change in electrode orientation or to the increase in electrode height. Results
would be inconclusive in this case.
A further objection to moving the stimulating electrode is that, as mentioned above,

it must be lifted off of and then lowered back down onto the retina. If it were lifting or
compressing the retina in the process, this might result in cell damage. Again ambiguities
would arise in the interpretation of threshold measurements. Thresholds might increase due
either a change in electrode position or due to cell damage.
Finally, a warning must be made about moving the electrode “in the plane of the retina”.

In order to facilitate fluid flow over the rabbit retina, the retina was mounted at a 30◦ angle
from the horizontal. If the micromanipulator axes were not properly aligned, movements of
the stimulating electrode might be misinterpreted. For example, Figure 5-4 depicts the case
in which one of the micromanipulator axes - call it the y-axis - is aligned so that motion
in the corresponding direction is parallel to the table. Since the retina is at an angle,
moving the micromanipulator arm 50µm in the y direction corresponds to a somewhat
larger displacement in the plane of the retina, as shown in the Figure.

5.3.4 Variations with time

When the retina is removed from the turtle or rabbit, its cells begin to die. In a typical
experiment using a rabbit retina, stable light-evoked responses may be recorded many hours
after removal of the retina. It was sometimes noted in experiments, however, that with
all of the stimulus parameters held constant, thresholds increased significantly over the
course of several minutes. The fact that thresholds varied over such a short time interval
indicates that the properties of some element in the experimental apparatus are changing
with time. The most likely candidates for such behavior are the electrode tip and the cell
itself. The passage of current through the electrode will tend to corrode its surface to
some extent. Furthermore, the health of the cell might be comprised by stimulation, either
due to toxic byproducts produced at the electrode tip or from fatigue due to continuous
stimulation. Corrosion and toxicity problems may be reduced through the use of biphasic,
charge-balanced pulses [12]. In general, though, more control experiments need to be done
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Figure 5-4: Movement of the stimulating electrode in a direction which is not parallel to
the retina.
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to investigate variations with time in our experimental apparatus.
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Chapter 6

Conclusion

6.1 Summary

Through a discussion of the retina and of the retinal implant, Chapter 2 provided the rele-
vant background material for the thesis. In this chapter, the anatomy and physiology of the
retina were discussed, the motivation for and a functional description of the retinal implant
were given, and the literature on electrical stimulation of retinal cells was reviewed. The
chapter concluded with a formulation of the thesis problem. This problem was addressed
in the following chapters using a combination of theoretical and experimental approaches.
In Chapter 3 the theory of extracellular electrical stimulation was examined. Threshold
comparisons were made based on the analysis of linear models of nerve cells in steady-state
electric fields of fairly simple shape. The design and construction of a practical stimulating
electrode, which we believe can be used for selective stimulation of ganglion cell bodies,
is presented in Chapter 4. At the end of the chapter, a model for numerically predicting
the electric fields produced by the electrode was presented. Finally, Chapter 5 describes
the experiments that were performed to test three hypotheses stemming from the results of
Chapter 3. For a number of reasons presented at the end of the chapter, these experiments
yielded inconclusive results. The results themselves were not presented.

6.2 Suggestions for further study

Opportunities arose frequently during the course of this work to pursue some new line of
inquiry, to refine the electrode design or construction, or to improve on our experimental
methods. Many of these opportunities were not taken for one reason or another, and are
therefore presented below as suggestions for future study.

6.2.1 Modeling and analysis

A number of fairly strong assumptions were made to facilitate the analysis of Chapter 3. A
natural extension of this work would be to determine if any if these assumptions might be
relaxed without making the problem analytically intractable. Some initial steps are taken
to do this in appendices A and B, where the time-dependent responses of the linear cell
models are examined. It was discovered in appendix A that the quasistatic models of the
cell body and axon (in a transverse field) had time constants which were roughly a factor
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of 1000 smaller than the membrane RC time constant. Additional thought should be given
to the astonishing rapidity at which these models reach steady-state.
Other assumptions might be tackled numerically. Consider for instance the circuit model

for the axon in a longitudinal field. To analyze the effects of a parallel-plate electrode on this
model, we assumed that the axon itself did not play a role in determining the extracellular
voltages. We would not expect this assumption to hold in a strict sense. To what extent
would the axon model influence the extracellular electric field?
The problem amounts to solving Laplace’s equation at the exterior surface of the model.

In appendix A, a three-dimensional electroquasistic model for an unmyelinated axon was
analyzed in a uniform, transverse electric field. Due to the symmetries of the model and
of the stimulating field, analytical solutions for Laplace’s equation could be found in a
straightforward manner. Solutions which account for longitudinally nonuniform boundary
conditions would be substantially more complex. Thus a numerical algorithm might be
employed to find such solutions.
A second numerical problem was introduced at the end of Chapter 4. To predict the elec-

tric fields generated by the experimental stimulating electrode, a set of boundary conditions
on Laplace’s equation were established. A numerical algorithm has yet to be implemented
to find the unique solution entailed by these boundary conditions.

6.2.2 Electrode construction

Three significant improvements can be made in the construction of single electrodes de-
scribed in Chapter 4. First, the Clear 2-Ton epoxy (used to encapsulate the electrode and
to cement it into the glass tube) leaves much to be desired. A harder-curing epoxy would be
less susceptible to smearing during tip-grinding. When the 2-Ton epoxy smeared onto the
electrode conductor surfaces, it might have changed their electrical properties, potentially
altering the effective electrode geometry. Ideally the epoxy should not soften after pro-
longed exposure to salt water, either. Soft epoxy might be smeared over conductor surfaces
in the course of electrode manipulation during an experiment. Again, this could lead to an
alteration of the effective electrode geometry. Second, an alternative to glass needs to be
found for the electrode housing. The glass capillary tubes were quite fragile and broke far
too often. If a small metal tube (such as a hypodermic needle) is used, it will be necessary
to insulate the conductor-insulator-conductor sandwich to circumvent stray shorts to the
housing. Third, attempts could be made plate the electrode tip. Plating electrode tips using
colloidal suspensions of gold or platinum black will lower the tip resistance, and possibly
reduce the likelihood of tip corrosion and/or subsequent toxicity problems.

6.2.3 Experimental methods

If the experimental procedures described in Chapter 5 are to be continued, systematic
attempts should be made to address each of the unresolved issues raised at the end of the
chapter. More controls - and more experiments in general - need to be performed.
The problems with stimulus artifact encountered in the turtle preparation might be

solved if the recording and stimulating electrodes could be placed further apart. Unfortu-
nately, the size of the preparation is quite small to begin with (two to three millimeters
in diameter), making this solution impractical. Given the constraint of a relatively small
electrode separation, attempts might be made to minimize the amplitude and duration of
the stimulus artifact. It was suggested in section 5.3, for example, that stimulus artifacts
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Figure 6-1: Stimulation of the retina with an electrode array (shaded). The thicker black
lines on the array represent exposed conductor surfaces, while the thin lines represent wires
which are insulated from the tissue. Abbreviations: r - retina; a - axon; cb - cell body; od -
optic disk; ea - electrode array; re - recording electrode.

outlast stimulus pulses due to saturation of the recording amplifiers. If this is indeed the
case, the duration of the artifacts might be minimized by disconnecting the leads of the
recording electrode from the amplifiers during the application of stimulus pulses.
Other unresolved issues might be addressed successfully using an array of stimulating

electrodes, such as that depicted in Figure 6-1. Rather than moving a stimulating electrode
physically, the electrode could be moved “virtually” by connecting the stimulator across
different pairs of conductors within the array. If the array is placed against the inner
limiting membrane, variations in the electrode height above cells would be constrained to
the biological variability of cell depth within the retina. This would remedy ambiguities
of the sort illustrated in Figure 5-3. With the electrode free to move, the positions of cell
bodies and axons might be deduced by plotting out thresholds obtained with the stimulating
electrode in several different locations.
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Appendix A

Additional mathematical
derivations

A.1 Time dependent responses of cell body in a uniform field

Equations (3.3)-(3.8) describe a dynamic system. What type of response will it exhibit if
the driving field Eo(t) is not constant in time? In this section the time-dependent response
of the plate/cell body system will be examined. This analysis will be directed at finding
the time constants of the system and also on finding a circuit representation for the system
dynamics.
In order to understand the time-dependent response of this system in terms of a circuit

model, it is helpful to solve equations (3.3)-(3.8) in for the surface charge densities σi
su and

σe
su. To do this it will be necessary to eliminate a, b, c, and d. First, solve for b and c in
terms of a and d using equations (3.3) and (3.4).

b = a− (R+∆)3

(R+∆)3 −R3

[
a− d

(R+∆)3
+ Eo(t)

]
,

c =
(R +∆)3R3

(R+∆)3 −R3

[
a− d

(R+∆)3
+ Eo(t)

]
.

Substitute these formulas for b and c into equations (3.5) and (3.6) and collect terms.

a

[
εf + εm

2(R +∆)3 +R3

(R+∆)3 −R3

]
+

d

(R +∆)3

[
−εm

3(R +∆)3

(R+∆)3 −R3

]

=
σi

su

cos θ
+ Eo(t)

[
−εm

3(R +∆)3

(R +∆)3 −R3

]
,

a

[
−εm

3R3

(R +∆)3 −R3

]
+

d

(R+∆)3

[
2εf + εm

(R +∆)3 + 2R3

(R+∆)3 −R3

]

=
σe

su

cos θ
+ Eo(t)

[
−εf + εm

(R+∆)3 + 2R3

(R+∆)3 −R3

]
.

The above equations can be greatly simplified by factoring a ∆ out of the denominators,

(R+∆)3 −R3 = ∆(3R2 + 3R∆+∆2),
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noting the definition of membrane capacitance per unit area,

Cm = εm/∆,

and using the approximation ∆ ≈ 0 since ∆ � R. The results of the simplification are as
follows.

a(εf + CmR) + d

(−Cm

R2

)
=

σi
su

cos θ
+ Eo(t)(−CmR), (A.1)

a(−CmR) + d

(
2εf
R3
+

Cm

R2

)
=

σe
su

cos θ
+ Eo(t)(−εf + CmR). (A.2)

[ Note in the above equations that if εf � CmR, σi
su ≈ −σe

su and we no longer have a
second order system.]

b and c can be eliminated from equations (3.7) and (3.8) in a nearly identical manner,
but this time using the definition of membrane conductance per unit area,

Gm = σm/∆.

The results are as follows

a(σi +GmR) + d

(
−Gm

R2

)
= −

·
σ

i

su

cos θ
+ Eo(t)(−GmR), (A.3)

a(−GmR) + d

(
2σe

R3
+

Gm

R2

)
= −

·
σ

e

su

cos θ
+ Eo(t)(−σe +GmR). (A.4)

Now solve equations (A.3) and (A.4) for a and d. In matrix notation,

[
a
d

]
= −

(
R3

cos θ

)
[

2σe
R3 + Gm

R2
Gm
R2

GmR σi +GmR

]
 ·

σ
i

su·
σ

e

su




2σiσe + 2σeGmR+ σiGmR
+

[
−3σeGm

R2

−σiσe

]
R3Eo(t)

2σiσe + 2σeGmR+ σiGmR
.

(A.5)
Substituting the above result into equations (A.1) and (A.2) yields the following ordinary
differential equation in surface charge density.

−

[
εf + CmR −CmR
−CmR 2εf + CmR

] [
2σe +GmR GmR

GmR σi +GmR

]  ·
σ

i

su·
σ

e

su




2σiσe + 2σeGmR+ σiGmR
=[

σi
su

σe
su

]
+

[
f1
f2

]
Eo(t) cos θ, (A.6)

where

f1 =
3εfσeGmR+ σeGmCmR2 − σiCmGmR2 − 3σiσeCmR

2σiσe + 2σeGmR+ σiGmR
, (A.7)

f2 =
−2εfσeGmR− σeGmCmR2 + σiCmGmR2 + 3σiσeCmR− εfσiGmR

2σiσe + 2σeGmR+ σiGmR
. (A.8)

Two important pieces of information come out of equation (A.6). The first is a circuit
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R2

R3

R1 R2

R3
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C   Rm

=

=

=
+ +2 2

Figure A-1: Circuit model for spherical cell.

representation of the nerve membrane dynamics. [not sorted out yet, but see Figure A-1].
The second important piece of information that can be obtained from equation (A.6)

are the time constants of the system. The equation is of the general form

−A
·
x= x+ drive terms,

where A is a 2 by 2 matrix. The time constants of the system are simply the eigenvalues of
the A matrix. Using the approximation that εf � CmR to simplify things, it can be shown
that

τ = 0,
CmR(σi + 2σe)

2σiσe +GmR(σi + 2σe)
. (A.9)

The zero-valued time constant is nonzero if the above approximation is not made. The
zero-valued time constant represents a very fast equilibration of the two surface charge
densities, σi

su and σe
su. The second time constant can be rewritten,

1
τ2
=

1
RmCm

+
2σiσe

CmR(σi + 2σe)
, (A.10)

where
Rm =

1
Gm

is the membrane sheet resistance. The first expression appearing on the right of equa-
tion (A.10) resembles a circuit RC time constant for the membrane. The second expression
is determined by the membrane capacitance Cm but also by the radius of the cell R and the
intracellular and extracellular conductivities σi and σe. To get an idea of the size of these
quantities, we use the typical cell data listed in Table A.1. Also, the radius of a typical
ganglion cell body is R = 10−5m. Using these data,

1
RmCm

= 103 s,
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Rm = 1000Ω · cm2 Cm = 1× 10−6F/cm2

σe = 0.02 S/cm σi = 0.005 S/cm

Table A.1: Typical cell data. From Cartee and Plonsey (1992)

E   (t)o

φ

r

y

x

R

∆

ε f σi
σmmε

ε f σe

,
,

,

Figure A-2: Axon model.

2σiσe

CmR(σi + 2σe)
= 4.44 × 106 s,

τ2 = 2.25× 10−7 s.

In such a case, the second term dominates the τ2, making it much smaller than the RmCm

product.

A.2 Axon in a uniform, transverse field

The same approach that was used to analyze the cell body in sections 3.2 and A.1 will now
be applied to the axon.

A.2.1 Solution form and boundary conditions

An axon is modeled as an infinitely long cylindrical shell, as shown in Figure A-2.
The solution for the electric potential is of the form

Φ =




a(t)r cosφ for r < R,

b(t)r cosφ+ c(t)
r cosφ for R < r < R+∆,

−Eo(t)r cosφ+
d(t)
r cosφ for r > R+∆.

(A.11)
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Before the boundary conditions for the problem are established, a couple of comments
will be made about the solution form. First, for large r, the potential is approximately
−Eo(t)r cosφ or simply −Eo(t)x. This agrees with the previously established condition
that the field is uniform and horizontally directed far from the cell. Second, note that
there is no z-variation in the potential. This is due to the uniformly applied field and
infinite length of the axon model. More importantly, it points to the relative simplicity of
the solution, which for other applied fields and axon geometries would likely be a modal
expansion in polar coordinates. Now we will establish the boundary conditions which apply
to the solution given above.
The functions a(t), b(t), c(t) and d(t) can be related to each other and to the surface

charge densities on the membrane:solution boundaries using continuity conditions estab-
lished in subsection 3.2.1. Using the definition of electric potential, equation (3.2), the first
of the three continuity conditions becomes

∂Φa

∂φ
=

∂Φb

∂φ
.

The remaining two continuity conditions simplify to

−εa
∂Φa

∂r
+ εb

∂Φb

∂r
= σsu,

−σa
∂Φa

∂r
+ σb

∂Φb

∂r
= − ·

σsu,

as before. Note that in this Section r represents the polar coordinate radius as defined in
Figure (A-2), whereas in the previous section r represented the spherical coordinate radius
as defined in Figure (3-3).
Application of the continuity conditions at r = R and r = R + ∆ yield the following

equations.
bR+

c

R
= aR, (A.12)

−Eo(t)(R+∆) +
d

R+∆
= b(R +∆) +

c

R+∆
, (A.13)

−εm

(
b− c

R2

)
cosφ+ εfa cosφ = σi

su, (A.14)

−εf

[
−Eo(t)− d

(R+∆)2

]
cosφ+ εm

[
b− c

(R+∆)2

]
cosφ = σe

su, (A.15)

−σm

(
b− c

R2

)
cosφ+ σia cosφ = − ·

σ
i

su, (A.16)

−σe

[
−Eo(t)− d

(R+∆)2

]
cosφ+ σm

[
b− c

(R+∆)2

]
cosφ = − ·

σ
e

su . (A.17)

In the above equations, a = a(t), b = b(t), c = c(t), d = d(t), and σi
su and σe

su

are the surface charge densities on the intracellular and extracellular membrane:solution
boundaries, respectively. These equations completely describe a linear time-invariant system
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in six variables (a, b, c, d, σi
su, and σe

su) which can be solved completely for a given Eo(t).

A.2.2 Time-independent solution

If the applied field is held constant at Eo, and the system described above is in steady
state, the time derivatives in equations (A.16) and (A.17) will be zero. In such a case,
equations (A.12),(A.13), (A.16), and (A.17) can be solved for a, b, c, and d.
From equations (A.12) and (A.13), it can be shown that

b = a− (R+∆)2

(R +∆)2 −R2

[
a− d

(R+∆)2
+ Eo

]
, (A.18)

c =
(R+∆)2R2

(R+∆)2 −R2

[
a− d

(R+∆)2
+ Eo

]
. (A.19)

Substituting into equations (A.16) and (A.17), noting that the time derivatives are zero,
and collecting terms yields

a

[
σi+σm

(R+∆)2+R2

(R+∆)2−R2

]
+ d

(R+∆)2

[
−σm

2(R+∆)2

(R+∆)2−R2

]
=Eo

[
−σm

2(R+∆)2

(R+∆)2−R2

]
,

a

[
−σm

2R2

(R+∆)2−R2

]
+ d

(R+∆)2

[
σe+σm

(R+∆)2+R2

(R+∆)2−R2

]
=Eo

[
−σe+σm

(R+∆)2+R2

(R+∆)2−R2

]
.

Several of the expressions in the two preceding equations can be written in terms of the
membrane conductance per unit area defined in equation (3.11) by noting that

σm

(R +∆)2 −R2
=

Gm

2R +∆
.

After making this substitution, we have

a

[
σi+Gm

(R+∆)2+R2

2R+∆

]
+ d

(R+∆)2

[
−Gm

2(R+∆)2

2R+∆

]
=Eo

[
−Gm

2(R+∆)2

2R+∆

]
,

a

[
−Gm

2R2

2R+∆

]
+ d

(R+∆)2

[
σe+Gm

(R+∆)2+R2

2R+∆

]
=Eo

[
−σe+Gm

(R+∆)2+R2

2R+∆

]
.

The equations that have been derived thus far can now be greatly simplified by rec-
ognizing that membrane thickness ∆ is much less than the axon radius R. Specifically,
cell membranes thickness is on the order of 75Å, whereas the radius of a typical axon is
roughly 0.5µm[26]. Thus the axon radius is almost 100 times greater than the cell membrane
thickness. Based on this comparison, we make the approximation ∆ ≈ 0 to obtain

a(σi +GmR) + d

(
−Gm

R

)
= Eo(−GmR),

a(−GmR) + d

(
σe

R2
+

Gm

R

)
= Eo(−σe +GmR).

Now a and d can be found fairly easily, and are given by

a = − 2σeGmR

σiGmR+ σeGmR+ σiσe
Eo, (A.20)
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d =
σiGmR3 − σeGmR3 − σiσeR

2

σiGmR+ σeGmR+ σiσe
Eo. (A.21)

Equations (A.11), (A.20) and (A.21) provide a complete solution for the electric poten-
tial inside and outside of the axon model. To determine the potential inside of the cell
membrane, it would be necessary to find b and c. This could be done by substituting the
solutions for a and d back into equations (A.18) and (A.19). As in the case of the cell body
model, however, the potential inside the membrane is not of critical importance, so we will
neglect b and c altogether.
Applying the definition of transmembrane potential given in equation (3.14) to the

solution above gives

Vm =
2σiσeR

σiGmR+ σeGmR+ σiσe
Eo cosφ. (A.22)

Note the similarity between the induced transmembrane potential for the cylindrical and
spherical models. All of the major points made in Subsection 3.2.3 apply to the cylindrical
axon model.

A.2.3 Time-dependent solutions

In this section the system dynamics of equations (A.12)-(A.17) are examined. The deriva-
tions parallel those used for the spherical cell.
The four coefficients a, b, c and d may be eliminated from equations (A.12)-(A.17),

leaving an ordinary differential equation in the surface charge densities, σi
su and σe

su. Solve
for b and c in terms of a and d using equations (A.12) and (A.13).

b = a− (R+∆)2

(R+∆)2 −R2

[
a− d

(R+∆)2
+ Eo(t)

]
,

c =
(R +∆)2R2

(R+∆)2 −R2

[
a− d

(R+∆)2
+ Eo(t)

]
.

Substitute formulas for b and c into equations (A.14) and (A.15) and collect terms.

a

[
εf + εm

(R +∆)2 +R2

(R +∆)2 −R2

]
+

d

(R+∆)2

[
−εm

2(R +∆)2

(R +∆)2 −R2

]

=
σi

su

cosφ
+ Eo(t)

[
−εm

2(R +∆)2

(R+∆)2 −R2

]
,

a

[
−εm

2R2

(R+∆)2 −R2

]
+

d

(R +∆)2

[
εf + εm

(R +∆)2 +R2

(R +∆)2 −R2

]

=
σe

su

cosφ
+ Eo(t)

[
−εf + εm

(R+∆)2 +R2

(R+∆)2 −R2

]
.

Factor a ∆ out of the denominators,

(R+∆)2 −R2 = ∆(2R +∆),

make use of the definition of membrane capacitance per unit area, Cm = εm/∆, and ap-
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proximate ∆ ≈ 0 since ∆� R.

a(εf + CmR) + d

(
−Cm

R

)
=

σi
su

cosφ
+ Eo(t)(−CmR), (A.23)

a(−CmR) + d

(
εf
R2
+

Cm

R

)
=

σe
su

cosφ
+ Eo(t)(−εf + CmR). (A.24)

[ Note in the above equations that if εf � CmR, σi
su ≈ −σe

su and we no longer have a
second order system.]

b and cmay be eliminated from equations (A.16) and (A.17) in a nearly identical manner,
but this time using the definition of membrane conductance per unit area, Gm = σm/∆.
Derivations yield

a(σi +GmR) + d

(
−Gm

R

)
=

− ·
σ

i

su

cosφ
+ Eo(t)(−GmR), (A.25)

a(−GmR) + d

(
σe

R2
+

Gm

R

)
=

− ·
σ

e

su

cosφ
+ Eo(t)(−σe +GmR). (A.26)

Now solve equations (A.25) and (A.26) for a and d. In matrix notation,

[
a
d

]
=

(
−R2

cosφ

)
[

σe
R2 + Gm

R
Gm
R

GmR σi +GmR

]
 ·

σ
i

su·
σ

e

su




σiσe + σiGmR+ σeGmR
+

[ −2σeGm
R

−σiσe

]
R2Eo(t)

σiσe + σiGmR+ σeGmR
. (A.27)

Substituting the above results into equations (A.23) and (A.24) yields the following ordinary
differential equation in surface charge density.

−

[
εf + CmR −CmR
−CmR εf + CmR

] [
σe +GmR GmR

GmR σi +GmR

] 
 ·

σ
i

su·
σ

e

su




σiσe + σiGmR+ σeGmR
=[

σi
su

σe
su

]
+

[
f1
f2

]
Eo(t) cos φ, (A.28)

where

f1 =
2εfσeGmR+ σeCmGmR2 − σiCmGmR2 − 2σiσeCmR

σiσe + σiGmR+ σeGmR
, (A.29)

f2 =
−εfσeGmR− σeCmGmR2 + σiCmGmR2 + 2σiσeCmR− εfσiGmR

σiσe + σiGmR+ σeGmR
. (A.30)

As in the case of the sphere, two important pieces of information can be found in
equation (A.28); a circuit representation of the system and the system time constants. The
circuit representation is shown in Figure A-3. Its topology is identical to that of the sphere,
but the resistor values are slightly different. Also, the cylinder radius R is somewhat smaller
than that of the sphere.
To find the time constants of the system, note again that equation (A.28) is of the form

−A
·
x= x+ drive terms.
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=

=

=

Figure A-3: Circuit model for cylindrical cell.

The time constants of the system are the eigenvalues of the A matrix. Using the fact that
εf � CmR, the time constants are found to be

τ = 0,
CmR(σi + σe)

σiσe +GmR(σi + σe)
. (A.31)

The zero-valued time constant arises because the approximation εf ≈ 0 was made. The
second time constant can be rewritten

1
τ2
=

1
RmCm

+
σiσe

CmR(σi + σe)
. (A.32)

The first expression appearing on the right of equation (A.32) resembles a circuit RC time
constant for the membrane. The second expression, as in the case of the sphere, is deter-
mined by the membrane capacitance Cm, the radius of the cell R and the intracellular and
extracellular conductivities σi and σe. Again the time constant will be dominated by the
second expression. Since the axon radius R ≈ 5 × 10−7m is somewhat smaller than that
of the sphere, the time constant for the axon will be somewhat smaller than that of the
sphere. Using the data of Table A.1,

1
RmCm

= 103 s,

σiσe

CmR(σi + σe)
= 8× 109 s,

τ2 = 1.25× 10−8 s.
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Appendix B

SPICE simulation of axon in
longitudinal field

To examine the time-dependent behavior of the model for an axon in a longitudinal field,
a SPICE simulation was run on the circuit of Figure B-1. An abbreviated version of the
input file is given at the end of this appendix.

B.1 Circuit description

A small unit of axonal length ∆ is represented by the circuit block in the dashed enclosure.
Using the notation of section 3.3, we see from the Figure that

cm =
1mF
∆

,

gm =
1/1Ω
∆

,

ri =
0.01Ω
∆

.

From equation (3.20),

λc =

√
∆2

(1/1Ω)(0.01Ω)
= 10∆,

+
-V1

1GΩ
1GΩ

1i

1e

2i

2e 3e

3i 300i

300e

+
-

+
-

+
-V2 V3 V300

1Ω 1mF

0.01Ω

1Ω 1mF

0.01Ω

1Ω 1mF

0.01Ω

1Ω 1mF

Figure B-1: SPICE simulation circuit for axon in a longitudinal field.
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Figure B-2: Distribution of source voltages along the axon model circuit.

Thus, the circuit of Figure B-1 represents an axon which is 300∆ = 30λc long. From
equation (3.21),

τm =
0.001F
1/1Ω

= 1ms.

This is the same as the membrane RC time constant found in section A.1.
The circled numbers in Figure B-1 represent the nodes of the circuit model between

each of the length-∆ segments. Nodes 1i-300i represent intracellular voltages of the circuit
model, and nodes 1e-300e represent the extracellular voltages at corresponding locations.
Applied extracellular voltages are modeled with perfect voltage sources V1-V300. To find
the step response of the circuit, the voltages were initially set to zero. For t > 0.5ms the
voltage sources were assigned as in Figure B-2. Note that segments of length 10λc surround
the two breakpoints at nodes 100e and 200e. These breakpoints represent impulses in the
activating function (see section 3.3), and were intentionally placed “far away” from each
other and from the left and right boundaries of the circuit.

B.2 Results

Plotted in Figure B-3 is the intracellular voltage at several nodes in the rightmost portion
of the circuit. Since the extracellular voltage at these locations is zero, the intracellular
voltage is equal to the induced transmembrane potential. The solid line, which represents
the transmembrane potential at one of the breakpoints, rises fastest. The dotted vertical
and horizontal lines indicate that this quantity reaches 63% of its final value at

τ = 0.4ms

after the extracellular voltages are switched on. Note that this interval is less than the
membrane RC time constant. Further away from the breakpoint, the intracellular voltages
rise more slowly and attain lower final values.

102



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

time (ms)

tr
an

sm
em

br
an

e 
po

te
nt

ia
l (

V
)

V(200i)

V(205i)

V(210i)

V(230i)

Figure B-3: “Intracellular” voltage vs. time.

B.3 Abbreviated SPICE input file

* ladder network

.subckt ladder 1 2 3
r1 1 2 0.01
r2 2 3 1
c1 2 3 0.001
.ends

*** rc ladder network

*** left side
r1 1000 0 1G * terminate with large resistance to ground
x1 1000 1 vl ladder
x2 1 2 vl ladder
x3 2 3 vl ladder
.
.
.
x98 97 98 vl ladder
x99 98 99 vl ladder
x100 99 100 vl ladder

vleft vl 0 dc 0 pulse(0 1 0.5m 2u 2u 10m 20m)

*** middle
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x101 100 101 500 ladder
x102 101 102 501 ladder
x103 102 103 502 ladder
.
.
.
x197 196 197 596 ladder
x198 197 198 597 ladder
x199 198 199 598 ladder
x200 199 200 599 ladder

e101 500 0 (vl,0) 0.990000
e102 501 0 (vl,0) 0.980000
e103 502 0 (vl,0) 0.970000
.
.
.
e198 597 0 (vl,0) 0.020000
e199 598 0 (vl,0) 0.010000
e200 599 0 (vl,0) 0.000000

*** right side
x201 200 201 0 ladder
x202 201 202 0 ladder
x203 202 203 0 ladder
.
.
.
x298 297 298 0 ladder
x299 298 299 0 ladder
x300 299 1001 0 ladder
r2 1001 0 1G * terminate with large resistor
***
.op
.tran 0.1m 10m
.print tran v(200) v(205) v(210) v(230)
.options nomod ingold=2 numdgt=8 post
.end
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